期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Remaining Useful Life Prediction for Aero-Engines Combining Sate Space Model and KF Algorithm 被引量:3
1
作者 Cai Jing Zhang Li Dong Ping 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期265-271,共7页
The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas temperature margin(EGTM)is used as the most important degradation parameter to obtain the operating performance of the a... The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas temperature margin(EGTM)is used as the most important degradation parameter to obtain the operating performance of the aero-engine.Because of the complex environment interference,EGTM always has strong randomness,and the state space based degradation model can identify the noisy observation from the true degradation state,which is more close to the actual situations.Therefore,a state space model based on EGTM is established to describe the degradation path and predict the remaining useful life(RUL).As one of the most effective methods for both linear state estimation and parameter estimation,Kalman filter(KF)is applied.Firstly,with EGTM degradation data,state space model approach is used to set up a state space model for aero-engine.Secondly,RUL of aero-engine is analyzed,and expected RUL and distribution of RUL are determined.Finally,the sate space model and KF algorithm are applied to an example of CFM-56aero-engine.The expected RUL is predicted,and corresponding probability density distribution(PDF)and cumulative distribution function(CDF)are given.The result indicates that the accuracy of RUL prediction reaches 7.76%ahead 580 flight cycles(FC),which is more accurate than linear regression,and therefore shows the validity and rationality of the proposed method. 展开更多
关键词 Prediction remaining noisy situations exhaust ahead rationality validity cumulative Bayesian
下载PDF
基于EKF的图像辅助定位算法
2
作者 涂卫军 周卫东 谭校纳 《舰船科学技术》 北大核心 2013年第5期48-52,共5页
介绍几何定位过程,并对其定位误差进行仿真分析。针对几何定位误差很大且与下视角大小密切相关的问题,采用扩展卡尔曼滤波算法(EKF)抑制测量噪声的影响,提高飞行器的定位精度。建立飞行器运动的状态空间模型,针对测量方程的非线性特点,... 介绍几何定位过程,并对其定位误差进行仿真分析。针对几何定位误差很大且与下视角大小密切相关的问题,采用扩展卡尔曼滤波算法(EKF)抑制测量噪声的影响,提高飞行器的定位精度。建立飞行器运动的状态空间模型,针对测量方程的非线性特点,对其进行线性化处理。在此基础上,采用EKF算法实时估计飞行器的空间位置坐标;通过数字仿真对滤波算法的定位效果进行检验;对影响滤波算法定位精度的因素进行分析并对不同飞行高度下的定位误差进行数字仿真。结果表明,算法收敛速度快,定位精度高,可显著减小测量噪声的影响,具有一定的工程应用价值。 展开更多
关键词 几何定位 图像辅助定位 扩展卡尔曼滤波 状态空间模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部