The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy ...The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.展开更多
Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LR...Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.展开更多
The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the resid...The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ’s post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ’s post science orbits is better than 10 cm and that there is no systematic error in GFZ’s post science orbits.展开更多
基金supported by the National Natural Science Foundation of China (40774013, 41274189)
文摘The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.
基金supported by the BDS and the National Natural Science Foundation of China(Grant No.11503068,U1631240)Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.06DZ2101)+2 种基金CAS Key Technology Talent ProgramNatural science fund of Shanghai(20ZR1467500)the Key Research Program of the Chinese Academy of Sciences(ZDRW-KT-2019-3-6)。
文摘Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
基金Sponsored by the Key Laboratory of Geospace Environment and Geodesy Ministry of Education, China ( No.1469990324233-04-11) and the NationalScience Foundation (No.40274002 , No.40474001) .
文摘The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ’s post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ’s post science orbits is better than 10 cm and that there is no systematic error in GFZ’s post science orbits.