期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Structural features in the mid-southern section of the Kyushu–Palau Ridge based on satellite altimetry gravity anomaly
1
作者 Feifei Zhang Dingding Wang +3 位作者 Xiaolin Ji Fanghui Hou Yuan Yang Wanyin Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期50-60,共11页
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ... The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect. 展开更多
关键词 structural features satellite altimetry gravity data Kyushu-Palau Ridge Central Basin Rift FAULTS Moho depth
下载PDF
A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6500 m
2
作者 Xiaolun Chen Xiaowen Luo +6 位作者 Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期112-122,共11页
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the... Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results. 展开更多
关键词 gravity anomaly bathymetry inversion VGGNet multibeam sonar satellite altimetry
下载PDF
Feasibility of maintaining satellite altimetry calibration site based on qianliyan islet at the Yellow Sea
3
作者 Bin Guan Zhongmiao Sun +2 位作者 Lei Yang Zhenhe Zhai Jian Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第3期223-230,共8页
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order... The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed. 展开更多
关键词 satellite altimetry Altimeter calibration satellite radar altimeter Microwave radiometer JASON Tide gauge
下载PDF
A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE,GRACE,Satellite Altimetry,and EGM2008 被引量:11
4
作者 Wei Liang Jiancheng Li +2 位作者 Xinyu Xu Shengjun Zhang Yongqi Zhao 《Engineering》 SCIE EI 2020年第8期860-878,共19页
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ... This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States. 展开更多
关键词 Gravity field model GOCE GRACE satellite altimetry Block-diagonal least-squares
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
5
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
Water storage variations in the Poyang Lake Basin estimated from GRACE and satellite altimetry 被引量:4
6
作者 Yang Zhou Shuanggen Jin +1 位作者 Robert Tenzer Jialiang Feng 《Geodesy and Geodynamics》 2016年第2期108-116,共9页
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var... The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water. 展开更多
关键词 Gravity Recovery and Climate Experiment(GRACE) satellite altimetry Terrestrial water storage variations Poyang Lake Basin
下载PDF
Variability of the Kuroshio extension system in 1992-2013 from satellite altimetry data 被引量:1
7
作者 Weiping Jiang Lifeng Peng +1 位作者 Taoyong Jin Shengjun Zhang 《Geodesy and Geodynamics》 2017年第2期103-110,共8页
The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly prod... The Kuroshio Extension (KE) plays an important role in climate and environmental change in the North Pacific. In this paper, more than 20 years of merged absolute dynamic topography and merged sea level anomaly products from satellite altimetry are used to analyze the stability of the KE system. By analyzing the annually averaged sea surface topography, the variations of inter-annual path and annually averaged eddy kinetic energy at the KE region, the KE's two dynamic states are given as: the relatively stable state during 1993 1995, 2002-2005, and 2010-2012, and the unstable dynamic state among 1996-2001 and 2006-2009. During the stable state, the KE spindle had a shorter path length and smaller time-varying amplitude, as well as a trend to move northward. While during the unstable state, the KE spindle had a longer path length and an integral southward transport trend, and was observed to oscillate significantly over time. The analysis on the KE's upstream and downstream region gives the same variations, indi- cating that they are significantly affected by the El Nino events. The power spectrum of the mean latitudinal position variation of the KE's upstream and downstream shows significant quasi-decadal oscillation characteristics and strong annual signals. Furthermore, the correlation of the strength vari- ation between the southern RG and the KE's upstream is calculated to be 0.50 after low-pass filtering, and that of the mean latitudinal position variation between the southern RG and the KE's upstream/ downstream are 0.75/0.69 after low-pass filtering, respectively. The strong correlations demonstrated that the southern RG and the KE are closely linked. 展开更多
关键词 Kuroshio extension satellite altimetry Eddy kinetic energy Southern recirculation gyre Quasi-decadal oscillation
下载PDF
Mesoscale surface circulation and variability of Southern Indian Ocean derived by combining satellite altimetry and drifter observations
8
作者 BENNY N.Peter SHENBAKAVALLI Ranjan +2 位作者 MAZLAN Hashim MOHD Nadzri Reba MOHD Razali Mahmud 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第9期12-22,共11页
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argo... High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993-2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20~ and 40~E and in the eastern part between 80~E and 100~E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993-2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation. 展开更多
关键词 Antarctic Ocean CIRCULATION satellite altimetry eddy kinetic energy Southern Indian Ocean antarctic circumpolar wave
下载PDF
Absolute sea level variability of Arctic Ocean in 1993–2018 from satellite altimetry and tide gauge observations
9
作者 Yanguang Fu Yikai Feng +1 位作者 Dongxu Zhou Xinghua Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期76-83,共8页
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00... Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM. 展开更多
关键词 Arctic Ocean absolute sea level variability sea level anomaly satellite altimetry tide gauge
下载PDF
Seasonal Behaviour of Mesoscale Eddy Trajectories in the North Indian Ocean Based on Satellite Altimetry
10
作者 Shailesh Mohan Pednekar 《International Journal of Geosciences》 2022年第2期93-114,共22页
In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies... In the north Indian Ocean (NIO), maps of sea level anomaly from satellite altimetry were analysed from January-1995 to December-2000. The study attempted to trace the trajectories of the individual mesoscale anomalies manually and to understand seasonal changes in terms of phase speed. Mesoscale anomalies are detected as concentric circular shapes and diameters of ~90 km to 600 km and the minimum 30 days life cycle. Relatively higher eddy kinetic energy was noticed in the northwestern region of the NIO. Individual mesoscale anomalies, namely positive (warm, anticyclonic eddies) and negative (cold, cyclonic eddies) showing travelling direction westward in the NIO basins. In autumn, the number of negative anomalies detected is more than positive anomalies and vice versa during summer. The westward propagating positive (negative) anomalies in the Arabian Sea start appearing in winter (spring) along (away from) the west coast of India and west of 65°E;individual anomalies move to the west in spring/summer/autumn and collide along Somalia’s & Arabian coast. A group of positive (negative) anomalies trajectories appears as a tail at the southern tip of India are located west of the Laccadive ridge in winter (summer to autumn) associated with LH (LL). The Bay of Bengal (BB) trajectories show southwestward in northern BB, westward in central BB and northwestward in southern BB;individual anomalies are appearing along the west coast of Andaman & Nicobar ridge. The zonal phase speed decreases away from the equator, and the magnitude varies longitudinally in each season in the form of a wave-like pattern propagating westward from autumn to summer;the life cycle of the wave is almost 365 days (a year). The theoretical phase speed of the first mode of the baroclinic Rossby waves is quite similar to that of averaged zonal speed. Therefore mesoscale anomalies (eddies) are embedded into the large waves like phenomenon (Rossby waves), responsible for creating high variability and EKE in the region of NIO along the western boundaries. 展开更多
关键词 Remote Sensing satellite altimetry North Indian Ocean Circulation MSLA Mesoscale Eddy Seasonal Variability Positive and Negative Anomalies
下载PDF
The Time Series Spectral Analysis of Satellite Altimetry and Coastal Tide Gauges and Tide Modeling in the Coast of Caspian Sea 被引量:2
11
作者 Mahmoud Pirooznia Sayyed Rouhollah Emadi Mehdi Najafi Alamdari 《Open Journal of Marine Science》 2016年第2期258-269,共12页
This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between d... This study endeavors to deal with the least square spectral analysis on the time series, to find present significant frequencies, to analyze 40 tide components using harmonic methods and to show relationship between discovered frequencies and 40 components of tide. For the purpose of collecting data of altimetry satellites of Topex/Poseidon (T/P), Jason 1, Jason 2 and coastal tide gauges of Bandar Anzali, Noshahr, and Nekah were utilized. In this time series formed by cross over points of altimetry satellite and then using least square spectral analysis on time series derived from altimetry satellite and coastal tide gauges the significant components were found and annual, biannual, and monthly components were discovered. Then, analysis of 40 tide components was conducted using harmonic method to find the amplitude and phase. It represented that solar annual (Sa) plays the most significant role on Caspian Sea corresponded to the least square spectral analysis of the time series. The results shows that the annual (Sa) and semi-annual Solar (Ssa) constituents on all of the ports listed have the highest amplitude in comparison with the other constituents which are respectively 16 cm, 18 cm and 15 cm for annual constituent and 2.8 cm, 5.4 cm and 3.7 cm for semi-annual constituent. 展开更多
关键词 Least Square Spectral Analysis Harmonic Analysis altimetry satellite Coastal Tide Gauges
下载PDF
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
12
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 Dynamic optimal interpolation Linearoptimal interpolation satellite altimetry Sea surface height Suitable region
下载PDF
Performance evaluation of HY-2 series satellites in marine gravity field recovery
13
作者 Ruijie Hao Xiaoyun Wan Keyan Zhang 《Geodesy and Geodynamics》 EI CSCD 2024年第4期397-403,共7页
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C... China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections. 展开更多
关键词 satellite altimetry HY-2 Sea surfaceheight Marinegravityfield
下载PDF
Cloud Detection and Centroid Extraction of Laser Footprint Image of GF-7 Satellite Laser Altimetry 被引量:2
14
作者 Jiaqi YAO Guoyuan LI +3 位作者 Jiyi CHEN Genghua HUANG Xiongdan YANG Shuaitai ZHANG 《Journal of Geodesy and Geoinformation Science》 2021年第3期1-12,共12页
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera... The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability. 展开更多
关键词 GF-7 quality control satellite laser altimetry laser footprint image cloud detection stability analysis of laser pointing angle
下载PDF
Structural characteristics and tectonic division of the Zambezi Delta basin in the offshore East Africa:evidences from gravity and seismic data
15
作者 Guozhang Fan Wen Li +8 位作者 Liangbo Ding Wanyin Wang Hongping Wang Dingding Wang Lin Li Hao Wang Chaofeng Wang Qingluan Wang Ying Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期105-118,共14页
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb... The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks. 展开更多
关键词 Zambezi Delta basin satellite altimetry gravity anomaly Beira High fault division uplift and depression pattern
下载PDF
The variation in basal channels and basal melt rates of Pine Island Ice Shelf
16
作者 Mingliang Liu Zemin Wang +2 位作者 Baojun Zhang Xiangyu Song Jiachun An 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期22-34,共13页
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly... In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS. 展开更多
关键词 Pine Island Ice Shelf basal channel basal melt rate digital elevation models(DEMs) satellite altimetry
下载PDF
An Arctic sea ice thickness variability revealed from satellite altimetric measurements 被引量:8
17
作者 BI Haibo HUANG Haijun +3 位作者 SU Qiao YAN Liwen LIU Yanxia XU Xiuli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第11期134-140,共7页
A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). E... A modified algorithm taking into account the first year(FY) and multiyear(MY) ice densities is used to derive a sea ice thickness from freeboard measurements acquired by satellite altimetry ICESat(2003–2008). Estimates agree with various independent in situ measurements within 0.21 m. Both the fall and winter campaigns see a dramatic extent retreat of thicker MY ice that survives at least one summer melting season. There were strong seasonal and interannual variabilities with regard to the mean thickness. Seasonal increases of 0.53 m for FY the ice and 0.29 m for the MY ice between the autumn and the winter ICESat campaigns, roughly 4–5 month separation, were found. Interannually, the significant MY ice thickness declines over the consecutive four ICESat winter campaigns(2005–2008) leads to a pronounced thickness drop of 0.8 m in MY sea ice zones. No clear trend was identified from the averaged thickness of thinner, FY ice that emerges in autumn and winter and melts in summer. Uncertainty estimates for our calculated thickness, caused by the standard deviations of multiple input parameters including freeboard, ice density, snow density, snow depth, show large errors more than 0.5 m in thicker MY ice zones and relatively small standard deviations under 0.5 m elsewhere. Moreover, a sensitivity analysis is implemented to determine the separate impact on the thickness estimate in the dependence of an individual input variable as mentioned above. The results show systematic bias of the estimated ice thickness appears to be mainly caused by the variations of freeboard as well as the ice density whereas the snow density and depth brings about relatively insignificant errors. 展开更多
关键词 satellite altimetry ice thickness ARCTIC first-year ice multiyear ice
下载PDF
Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry 被引量:5
18
作者 WANG Yihang FANG Guohong +3 位作者 WEI Zexun WANG Yonggang WANG Xinyi XU Xiaoqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第4期11-23,共13页
The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the d... The global distributions of eight principal tidal constituents, M2, S2, K1, O1, N2, K2, P1, and Q1, are derived using TOPEX/Poseidon and JASON-1(T/P-J) satellite altimeter data for 16 a. The intercomparison of the derived harmonics at 7000 subsatellite track crossover points shows that the root mean square (RMS) values of the tidal height differences of the above eight constituents range from 1.19 cm to 2.67 cm, with an average of about 2 cm. The RMS values of the tidal height differences between T/P-J solutions and the harmonics from ground measurements at 152 tidal gauge stations for the above constituents range from 0.34 cm to 1.08 cm, and the relative deviations range from 0.031 to 0.211. The root sum square of the RMS differences of these eight constituents is 2.12 cm, showing the improvement of the present model over the existing global ocean tidal models. Based on the obtained tidal model the global ocean tidal energetics is studied and the global distribution of the tidal power input density by tide-generating force of each constituent is calculated, showing that the power input source regions of semidiurnal tides are mainly concentrated in the tropical belt between 30S and 30N, while the power input source regions of diurnal tides are mainly concentrated off the tropic oceans. The global energy dissipation rates of the M2, S2, K1, O1, N2, P1, K2 and Q1 tides are 2.424, 0.401, 0.334, 0.160, 0.113, 0.035, 0.030 and 0.006 TW, respectively. The total global tidal dissipation rate of these eight constituents amounts to 3.5 TW. 展开更多
关键词 satellite altimetry global ocean tides tidal energetics tidal power input
下载PDF
Accuracy assessment of global ocean tide models in the South China Sea using satellite altimeter and tide gauge data 被引量:3
19
作者 Yanguang Fu Yikai Feng +3 位作者 Dongxu Zhou Xinghua Zhou Jie Li Qiuhua Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期1-10,共10页
In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a... In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a,FES2014,GOT4.8,HAMTIDE12,OSU12 and TPXO8,were considered.The accuracy of eight major tidal constituents(i.e.,Q1,O1,P1,K1,N2,M2,S2 and K2)were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry(TOPEX and Jason series)and tide gauge observations.The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean(depth>200 m)and 1.18–5.63 cm in shallow water area(depth<200 m).Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait,which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data.In coastal regions,an accuracy performance was investigated using tidal results from 37 tide gauge stations.The root sum square values were in the range of 9.35–19.11 cm,with the FES2014 model exhibiting slightly superior performance. 展开更多
关键词 accuracy assessment tide model satellite altimetry tide gauge South China Sea
下载PDF
A new decomposition model of sea level variability for the sea level anomaly time series prediction
20
作者 Qinting SUN Jianhua WAN +2 位作者 Shanwei LIU Jinghui JIANG Yasir MUHAMMAD 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1629-1642,共14页
Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit... Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction. 展开更多
关键词 time series decomposition satellite altimetry China Sea and its vicinity sea level change
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部