Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper di...Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.展开更多
Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China M...Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.展开更多
Using Ensemble Adjustment Kalman Filter(EAKF), two types of ocean satellite datasets were assimilated into the First Institute of Oceanography Earth System Model(FIO-ESM), v1.0. One control experiment without data ass...Using Ensemble Adjustment Kalman Filter(EAKF), two types of ocean satellite datasets were assimilated into the First Institute of Oceanography Earth System Model(FIO-ESM), v1.0. One control experiment without data assimilation and four assimilation experiments were conducted. All the experiments were ensemble runs for 1-year period and each ensemble started from different initial conditions. One assimilation experiment was designed to assimilate sea level anomaly(SLA); another, to assimilate sea surface temperature(SST); and the other two assimilation experiments were designed to assimilate both SLA and SST but in different orders. To examine the effects of data assimilation, all the results were compared with an objective analysis dataset of EN3. Different from the ocean model without coupling, the momentum and heat fluxes were calculated via air-sea coupling in FIO-ESM, which makes the relations among variables closer to the reality. The outputs after the assimilation of satellite data were improved on the whole, especially at depth shallower than 1000 m. The effects due to the assimilation of different kinds of satellite datasets were somewhat different. The improvement due to SST assimilation was greater near the surface, while the improvement due to SLA assimilation was relatively great in the subsurface. The results after the assimilation of both SLA and SST were much better than those only assimilated one kind of dataset, but the difference due to the assimilation order of the two kinds of datasets was not significant.展开更多
Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmosp...Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.展开更多
Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional ob...Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.展开更多
High spectral resolution(or hyperspectral)infrared(IR)sounders onboard low earth orbiting satellites provide high vertical resolution atmospheric information for numerical weather prediction(NWP)models.In contrast,ima...High spectral resolution(or hyperspectral)infrared(IR)sounders onboard low earth orbiting satellites provide high vertical resolution atmospheric information for numerical weather prediction(NWP)models.In contrast,imagers on geostationary(GEO)satellites provide high temporal and spatial resolution which are important for monitoring the moisture associated with severe weather systems,such as rapidly developing local severe storms(LSS).A hyperspectral IR sounder onboard a geostationary satellite would provide four-dimensional atmospheric temperature,moisture,and wind profiles that have both high vertical resolution and high temporal/spatial resolutions.In this work,the added-value from a GEO-hyperspectral IR sounder is studied and discussed using a hybrid Observing System Simulation Experiment(OSSE)method.A hybrid OSSE is distinctively different from the traditional OSSE in that,(a)only future sensors are simulated from the nature run and(b)the forecasts can be evaluated using real observations.This avoids simulating the complicated observation characteristics of the current systems(but not the new proposed system)and allows the impact to be assessed against real observations.The Cross-track Infrared Sounder(CrIS)full spectral resolution(FSR)is assumed to be onboard a GEO for the impact studies,and the GEO CrIS radiances are simulated from the ECMWF Reanalysis v5(ERA5)with the hyperspectral IR all-sky radiative transfer model(HIRTM).The simulated GEO CrIS radiances are validated and the hybrid OSSE system is verified before the impact assessment.Two LSS cases from 2018 and 2019 are selected to evaluate the value-added impacts from the GEO CrIS-FSR data.The impact studies show improved atmospheric temperature,moisture,and precipitation forecasts,along with some improvements in the wind forecasts.An added-value,consisting of an overall 5%Root Mean Square Error(RMSE)reduction,was found when a GEO CrIS-FSR is used in replacement of LEO ones indicat-ing the potential for applications of data from a GEO hyperspectral IR sounder to improve local severe storm forecasts.展开更多
This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the ...This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.展开更多
An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. proc...An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.展开更多
Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological communit...Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.展开更多
基金funded by the Korea Meteorological Administration Research and Development Program under Grant RACS 2010-2016supported by the Brain Korea 21 project of the Ministry of Education and Human Resources Development of the Korean government
文摘Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2021JC0009)the Natural Science Foundation of China(Grant Nos.U2142212 and 42105136)。
文摘Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.
基金the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406404)the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201505013)Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration (Grant No. 2012G24)
文摘Using Ensemble Adjustment Kalman Filter(EAKF), two types of ocean satellite datasets were assimilated into the First Institute of Oceanography Earth System Model(FIO-ESM), v1.0. One control experiment without data assimilation and four assimilation experiments were conducted. All the experiments were ensemble runs for 1-year period and each ensemble started from different initial conditions. One assimilation experiment was designed to assimilate sea level anomaly(SLA); another, to assimilate sea surface temperature(SST); and the other two assimilation experiments were designed to assimilate both SLA and SST but in different orders. To examine the effects of data assimilation, all the results were compared with an objective analysis dataset of EN3. Different from the ocean model without coupling, the momentum and heat fluxes were calculated via air-sea coupling in FIO-ESM, which makes the relations among variables closer to the reality. The outputs after the assimilation of satellite data were improved on the whole, especially at depth shallower than 1000 m. The effects due to the assimilation of different kinds of satellite datasets were somewhat different. The improvement due to SST assimilation was greater near the surface, while the improvement due to SLA assimilation was relatively great in the subsurface. The results after the assimilation of both SLA and SST were much better than those only assimilated one kind of dataset, but the difference due to the assimilation order of the two kinds of datasets was not significant.
基金partially supported by the JPSS PGRR science program(NA15NES4320001)the NOAA Joint Technology Transfer Initiative(NA19OAR4590240)at CIMSS/University of Wisconsin-Madison。
文摘Satellite infrared(IR)sounder and imager measurements have become one of the main sources of data used by data assimilation systems to generate initial conditions for numerical weather prediction(NWP)models and atmospheric analysis/reanalysis.This paper reviews the development of satellite IR data assimilation in NWP in recent years,especially the assimilation of all-sky satellite IR observations.The major challenges and future directions are outlined and discussed.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1501803 and 2017YFC1502102)。
文摘Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.
基金This work is supported by the NOAA GeoXO program(NA15NES4320001).
文摘High spectral resolution(or hyperspectral)infrared(IR)sounders onboard low earth orbiting satellites provide high vertical resolution atmospheric information for numerical weather prediction(NWP)models.In contrast,imagers on geostationary(GEO)satellites provide high temporal and spatial resolution which are important for monitoring the moisture associated with severe weather systems,such as rapidly developing local severe storms(LSS).A hyperspectral IR sounder onboard a geostationary satellite would provide four-dimensional atmospheric temperature,moisture,and wind profiles that have both high vertical resolution and high temporal/spatial resolutions.In this work,the added-value from a GEO-hyperspectral IR sounder is studied and discussed using a hybrid Observing System Simulation Experiment(OSSE)method.A hybrid OSSE is distinctively different from the traditional OSSE in that,(a)only future sensors are simulated from the nature run and(b)the forecasts can be evaluated using real observations.This avoids simulating the complicated observation characteristics of the current systems(but not the new proposed system)and allows the impact to be assessed against real observations.The Cross-track Infrared Sounder(CrIS)full spectral resolution(FSR)is assumed to be onboard a GEO for the impact studies,and the GEO CrIS radiances are simulated from the ECMWF Reanalysis v5(ERA5)with the hyperspectral IR all-sky radiative transfer model(HIRTM).The simulated GEO CrIS radiances are validated and the hybrid OSSE system is verified before the impact assessment.Two LSS cases from 2018 and 2019 are selected to evaluate the value-added impacts from the GEO CrIS-FSR data.The impact studies show improved atmospheric temperature,moisture,and precipitation forecasts,along with some improvements in the wind forecasts.An added-value,consisting of an overall 5%Root Mean Square Error(RMSE)reduction,was found when a GEO CrIS-FSR is used in replacement of LEO ones indicat-ing the potential for applications of data from a GEO hyperspectral IR sounder to improve local severe storm forecasts.
基金Supported by the National Natural Science Foundation of China(41075081)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106008 and GYHY201206007)
文摘This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.
文摘An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.
基金Supported by the National Key Research and Development Program of China(2017YFC1501900)Middle-and Long-term Development Strategic Research Project of the Chinese Academy of Engineering(2019-ZCQ-06)。
文摘Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.