Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in t...Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in the fitting algorithm to solve the ephemeris parameters as well as the user satellite position computation for GEOs.Based on the standard broadcast ephemerides,the representations of both the orbit and its perturbation were revised according to the second class of nonsingular orbital elements.In this research,a 16-parameter broadcast ephemeris is presented specifically for GEOs,and user satellite position computation formulas were derived correspondingly.Fit simulations show that the root of mean squares(RMS)of user range error(URE)with two hour and three hour data sets are better than 0.05 m and 0.1 m,respectively.展开更多
为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消...为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。展开更多
文摘Currently,the broadcast ephemerides used in GEOs are same as those of the MEOs and IGSOs in the BeiDou navigation constellation.However,a trade-off strategy,i.e.an orbital inclination of 5°rotation,is needed in the fitting algorithm to solve the ephemeris parameters as well as the user satellite position computation for GEOs.Based on the standard broadcast ephemerides,the representations of both the orbit and its perturbation were revised according to the second class of nonsingular orbital elements.In this research,a 16-parameter broadcast ephemeris is presented specifically for GEOs,and user satellite position computation formulas were derived correspondingly.Fit simulations show that the root of mean squares(RMS)of user range error(URE)with two hour and three hour data sets are better than 0.05 m and 0.1 m,respectively.
文摘为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。