In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imag...In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.展开更多
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitati...Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.展开更多
Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predic...Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987–December 2000) dateset that was o?cially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25° × 0.25°) resolution. GSSTF2b (July 1987–December 2008) and GSSTF3 (July 1999–December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.展开更多
In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent...In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.展开更多
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the ...A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.展开更多
文摘星基广播式自动相关监视(ADS-B,automatic dependent surveillance-broadcast)系统是一种新型的航空器监视技术,在未来空中交通管理系统中具有广阔的应用前景。为了深入研究星基ADS-B系统中航空器到卫星的空天链路通信性能,将专业软件Matlab和STK(system tool kit)有效联合,构建符合国际标准的星基ADS-B空天链路完整模型;通过离散事件动态交互模拟ADS-B消息的发送与接收全过程,最后统计得出体现星基ADS-B空天链路通信性能的消息识别概率(POI,possibility of identify)、消息检测概率(POD,possibility of detective)、信号接收功率、信号冲突概率、卫星覆盖范围等指标。仿真结果表明,随着区域内航空器数量上升,POI、POD下降,消息冲突概率上升。
文摘In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.
基金The National Natural Science Foundation of China under contract No.40730843the National High Technology Development Program ("863"Program)under contract No.2007AA12Z182
文摘Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.
基金supported by the Making Earth System data records for Use in Research En-vironments (MEaSUREs) Program of NASA Science Mission Directorate-Earth Science Division
文摘Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987–December 2000) dateset that was o?cially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25° × 0.25°) resolution. GSSTF2b (July 1987–December 2008) and GSSTF3 (July 1999–December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.
基金supported by National Natural Science Foundation of China(Nos.12275305 and 12205334)the Chinese Academy of Science Hundred Youth Talent Program+1 种基金China Postdoctoral Science Foundation(No.2022M713188)the Director’s Fund of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN19)。
文摘In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.
文摘A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.