Quantum communications helps us to enhance the security and efficiency of communications and to deepen our understanding of quantum physics. Its rapid development in recent years has attracted the interest of research...Quantum communications helps us to enhance the security and efficiency of communications and to deepen our understanding of quantum physics. Its rapid development in recent years has attracted the interest of researchers from diverse fields such as physics, mathematics, and computer science. We review the background and current state of quantum communications technology, with an emphasis on quantum key distribution, quantum random number generation, and a relatively hot topic: device independent protocols.展开更多
The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In...The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.展开更多
In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every pola...In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doub...Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.展开更多
As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communicat...As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.展开更多
Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high...Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high stability and scalability,which enables a vital platform for the implementation of quantum information processing and quantum communications.This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.展开更多
We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his inf...We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.展开更多
This paper presents photonic communications and data storage capacitates for classical and quantum communications over a quantum channel. These capacities represent a generalization of Shannon’s classical channel cap...This paper presents photonic communications and data storage capacitates for classical and quantum communications over a quantum channel. These capacities represent a generalization of Shannon’s classical channel capacity and coding theorem in two ways. First, it extends classical results for bit communication transport to all frequencies in the electromagnetic spectrum. Second, it extends the results to quantum bit (qubit) transport as well as a hybrid of classical and quantum communications. Nature’s limits on the rate at which classical and/or quantum information can be sent error-free over a quantum channel using classical and/or quantum error-correcting codes are presented as a function of the thermal background light level and Einstein zero-point energy. Graphical results are given as well as numerical results regarding communication rate limits using Planck’s natural frequency and time-interval units!展开更多
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu...his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.展开更多
Hardly had the elation in the wake of the 1,200 km-survival of quantum entanglement subsided before we again had news from Micius.On August 10,the joint team reported online in Nature the results from the other two ma...Hardly had the elation in the wake of the 1,200 km-survival of quantum entanglement subsided before we again had news from Micius.On August 10,the joint team reported online in Nature the results from the other two major experiments aboard the satellite:Both the encrypted quantum key distribution(QKD)and quantum teleportation(QT)successfully passed through a distance of approximately 1,200 km,and did so less展开更多
Based on mutual authentication and dense coding,a novel revised efficient quantum direct communication scheme is proposed.It is composed of two phases:the quantum state distribution process and the direct communicati...Based on mutual authentication and dense coding,a novel revised efficient quantum direct communication scheme is proposed.It is composed of two phases:the quantum state distribution process and the direct communication process.The purpose of the former is to authenticate Trent and users to each other,and let the two legitimate users(Alice and Bob)safely share the Bell states.While the latter aims to make direct communication to transmit a secret message between Alice and Bob.In order to prevent from Eve's eavesdropping as well as to authenticate each other simultaneously,a decoy photon checking technique is applied.Compared with other analogous protocols,the quantum state distribution process is more simple and feasible and the proposed scheme is more efficient;i.e.,the total efficiency is almost 100%.Security analysis shows that the proposed scheme is secure against the eavesdropping attacks,the impersonation attacks,and some special Trent's attacks,including the attacks by using different initial states.展开更多
Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger eq...Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results.展开更多
With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced wi...We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.展开更多
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypti...We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.展开更多
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-...In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.展开更多
We introduce an attack scheme for eavesdropping freely the ping-pong quantum communication protocol proposed by Bostrǒm and Felbinger [Phys. Rev. Left. 89, 187902 (2002)] in a noise channel. The vicious eavesdroppe...We introduce an attack scheme for eavesdropping freely the ping-pong quantum communication protocol proposed by Bostrǒm and Felbinger [Phys. Rev. Left. 89, 187902 (2002)] in a noise channel. The vicious eavesdropper, Eve, intercepts and measures the travel photon transmitted between the sender and the receiver. Then she replaces the quantum signal with a multi-photon signal in the same state, and measures the returned photons with the measuring basis, with which Eve prepares the fake signal except for one photon. This attack increases neither the quantum channel losses nor the error rate in the sampling instances for eavesdropping check. It works for eavesdropping the secret message transmitted with the ping-pong protocol. Finally, we propose a way for improving the security of the ping-pong protocol.展开更多
In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the server...In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.展开更多
This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication...This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.展开更多
基金supported by the National Basic Research Program of China under Grants No. 2011CBA00200 No. 2011CB921200+2 种基金National Natural Science Foundation of China under Grants No. 60921091 No. 61101137 No. 61201239
文摘Quantum communications helps us to enhance the security and efficiency of communications and to deepen our understanding of quantum physics. Its rapid development in recent years has attracted the interest of researchers from diverse fields such as physics, mathematics, and computer science. We review the background and current state of quantum communications technology, with an emphasis on quantum key distribution, quantum random number generation, and a relatively hot topic: device independent protocols.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.
基金supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China under Grant No.12511119
文摘In polarization-encoded free-space quantum communications, a transmitter on a satellite and a receiver in a ground station each have a respective polarization zero direction, by which they encode and decode every polariza-tion quantum bit required for a quantum com-munication protocol. In order to complete the protocol, the ground-based receiver needs to track and compensate for the polarization zero direction of the satellite-based transmitter. Ex- pressions satisfied by amplitudes of the s-polarization component and the p-polarization component are derived based on a two-mirror model, and a condition satisfied by the reflec- tion coefficients of the two mirrors is given. A polarization tracking principle is analyzed for satellite-to-ground quanaun communications, and quantum key encoding and decoding prin- ciples based on polarization tracking are given. A half-wave-plate-based dynamic polariza- tion-basis compensation scheme is proposed in this paper, and this scheme is proved to be suitable for satellite-to-ground and intersatellite quantum communications.
基金Supported by the National Natural Science Foundation of China under Grant No 61378011the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the de- tector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12kin and 8 km when the 1 13 and the 2 B steps are implemented, respectively.
基金funded by Youth Fund of the National Natural Science Foundation of China,grant number 11504176,61601230.
文摘As one of the main application directions of quantum technology,underwater quantum communication is of great research significance.In order to study the influence of marine planktonic algal particles on the communication performance of underwater quantum links,based on the extinction characteristics of marine planktonic algal particles,the influence of changes in the chlorophyll concentration and particle number density of planktonic algal particles on the attenuation of underwater links is explored respectively,the influence of marine planktonic algal particles on the fidelity of underwater quantum links,the generation rate of the security key,and the utilization rate of the channel is analyzed,and simulation experiments are carried out.The results show that with the increase in chlorophyll concentration and particle density of aquatic planktonic algal particles,quantum communication channel link attenuation shows a gradually increasing trend.In addition,the security key generation rate,channel fidelity and utilization rate are gradually decreasing.Therefore,the performance of underwater quantum communication channel will be interfered by marine planktonic algal particles,and it is necessary to adjust the relevant parameter values in the quantum communication system according to different marine planktonic algal particle number density and chlorophyll concentration to improve the performance of quantum communication.
基金support from the Natural Science Foundation of China(61975001)National Key R&D Program of China(2018YFB1107205)+1 种基金Beijing Natural Science Foundation(Z190005)the Key R&D Program of Guangdong Province(2018B030329001).
文摘Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics.Integrated quantum photonics offers significant advantages of dense integration,high stability and scalability,which enables a vital platform for the implementation of quantum information processing and quantum communications.This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.
基金Supported by the National Natural Science Foundation of China(No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20123223110003)+1 种基金the University Natural Science Research Foundation of Jiangsu Province(No.11KJA510002)the Open Research Fund of National Laboratory of Solid State Microstructures(M25020,M25022)
文摘We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.
文摘This paper presents photonic communications and data storage capacitates for classical and quantum communications over a quantum channel. These capacities represent a generalization of Shannon’s classical channel capacity and coding theorem in two ways. First, it extends classical results for bit communication transport to all frequencies in the electromagnetic spectrum. Second, it extends the results to quantum bit (qubit) transport as well as a hybrid of classical and quantum communications. Nature’s limits on the rate at which classical and/or quantum information can be sent error-free over a quantum channel using classical and/or quantum error-correcting codes are presented as a function of the thermal background light level and Einstein zero-point energy. Graphical results are given as well as numerical results regarding communication rate limits using Planck’s natural frequency and time-interval units!
文摘his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.
文摘Hardly had the elation in the wake of the 1,200 km-survival of quantum entanglement subsided before we again had news from Micius.On August 10,the joint team reported online in Nature the results from the other two major experiments aboard the satellite:Both the encrypted quantum key distribution(QKD)and quantum teleportation(QT)successfully passed through a distance of approximately 1,200 km,and did so less
基金The National Natural Science Foundation of China(No.60873101)the Natural Science Foundation of Jiangsu Province(No.BK2008209)the Research Foundation of Nanjing University of Information Science and Technology(No.20080298)
文摘Based on mutual authentication and dense coding,a novel revised efficient quantum direct communication scheme is proposed.It is composed of two phases:the quantum state distribution process and the direct communication process.The purpose of the former is to authenticate Trent and users to each other,and let the two legitimate users(Alice and Bob)safely share the Bell states.While the latter aims to make direct communication to transmit a secret message between Alice and Bob.In order to prevent from Eve's eavesdropping as well as to authenticate each other simultaneously,a decoy photon checking technique is applied.Compared with other analogous protocols,the quantum state distribution process is more simple and feasible and the proposed scheme is more efficient;i.e.,the total efficiency is almost 100%.Security analysis shows that the proposed scheme is secure against the eavesdropping attacks,the impersonation attacks,and some special Trent's attacks,including the attacks by using different initial states.
基金The National Natural Science Foundation of China(No60472054)the High Technology Research Program of JiangsuProvince(NoBG2004035)the Foundation of Excellent Doctoral Dis-sertation of Southeast University (No0602)
文摘Principles and performances of quantum stochastic filters are studied for nonlinear time-domain filtering of communication signals. Filtering is realized by combining neural networks with the nonlinear Schroedinger equation and the time-variant probability density function of signals is estimated by solution of the equation. It is shown that obviously different performances can be achieved by the control of weight coefficients of potential fields. Based on this characteristic, a novel filtering algorithm is proposed, and utilizing this algorithm, the nonlinear waveform distortion of output signals and the denoising capability of the filters can be compromised. This will make the application of quantum stochastic filters be greatly extended, such as in applying the filters to the processing of communication signals. The predominant performance of quantum stochastic filters is shown by simulation results.
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004)
文摘We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61170270,61100203,60903152,61003286,and61121061)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0260)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090005110010)the Natural Science Foundation of Beijing (Grant Nos. 4112040 and 4122054)the Foundation of Science and Technology on Communication Security Laboratory (Grant No. 9140C110101110 C1104)the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01,BUPT2011RC0505,2011PTB-00-29,and 2011RCZJ15)
文摘We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z419), the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023), National Laboratory for Moderm Communications Science Foundation of China (Grant No 9140C1101010601) and the 0pen Foundation of State Key Laboratory of Information Security (Graduate School of Chinese Academy of Sciences).
文摘In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein-Podolsky-Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the‘ping-pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.
基金Project supported by the National Natural Science Foundation of China (Grant No 10604008) and the Beijing Education Committee (Grant No XK100270454).
文摘We introduce an attack scheme for eavesdropping freely the ping-pong quantum communication protocol proposed by Bostrǒm and Felbinger [Phys. Rev. Left. 89, 187902 (2002)] in a noise channel. The vicious eavesdropper, Eve, intercepts and measures the travel photon transmitted between the sender and the receiver. Then she replaces the quantum signal with a multi-photon signal in the same state, and measures the returned photons with the measuring basis, with which Eve prepares the fake signal except for one photon. This attack increases neither the quantum channel losses nor the error rate in the sampling instances for eavesdropping check. It works for eavesdropping the secret message transmitted with the ping-pong protocol. Finally, we propose a way for improving the security of the ping-pong protocol.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state (0) by the servers on the network, which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons, which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.
基金This work is supported by the National Natural Science Foundation of China(No.61572086)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)+1 种基金the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)the Application Foundation Project of Sichuan Province(No.2017JY0168).
文摘This paper summarizes the state of art in quantum communication networks and trust management in recent years.As in the classical networks,trust management is the premise and foundation of quantum secure communication and cannot simply be attributed to security issues,therefore the basic and importance of trust management in quantum communication networks should be taken more seriously.Compared with other theories and techniques in quantum communication,the trust of quantum communication and trust management model in quantum communication network environment is still in its initial stage.In this paper,the core technologies of establishing secure and reliable quantum communication networks are categorized and summarized,and the trends of each direction in trust management of quantum communication network are discussed in depth.