Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
Kozeny-Carman(KC) equation is a well-known relation between hydraulic conductivity and pore properties in porous material. The applications of KC equation to predicting saturated hydraulic conductivities of sands and ...Kozeny-Carman(KC) equation is a well-known relation between hydraulic conductivity and pore properties in porous material. The applications of KC equation to predicting saturated hydraulic conductivities of sands and non-expansive soils are well documented. However, KC equation is incapable of predicting saturated hydraulic conductivity of expansive soil(e.g. bentonite) well. Based on a new dualpore system, this study modified KC equation for improving the prediction of saturated hydraulic conductivities of bentonites. In this study, an assumption that inter-layer space(micropore) has limited effect on fluid flow performance of compacted bentonite was adopted. The critical parameters including total porosity and total tortuosity in conventional KC equation were replaced by macroporosity and tortuosity of macropore, respectively. Macroporosity and microporosity were calculated by basal spacing of compacted bentonite, which was estimated by assuming that specific surface area is changeable during saturation process. A comprehensive comparison of bentonite’s saturated hydraulic conductivity predictions, including modified KC equation proposed in this study, conventional KC equation, and prediction method based on diffuse double layer(DDL) theory, was carried out. It was found that the predicted saturated hydraulic conductivity of bentonites calculated using modified KC equation fitted the experimental data better than others to a certain extent.展开更多
Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with ...Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.展开更多
As an important soil property,saturated hydraulic conductivity(Ks)controls many hydrological processes,such as runoff generation types,soil moisture storage and water movement.Because of the extremely harsh natural en...As an important soil property,saturated hydraulic conductivity(Ks)controls many hydrological processes,such as runoff generation types,soil moisture storage and water movement.Because of the extremely harsh natural environmental conditions and soil containing a significant fraction of gravel fragments in high-elevation mountainous catchments,the measurement data of Ks and other soil properties are seriously lacking,which leads to poor understanding on its hydrological processes and water cycle.In this study,the vertical variation(0-150 cm)of Ks and other soil properties from 38 soil profiles were measured under five different land cover types(alpine barren,forest,marshy meadow,alpine shrub and alpine meadow)in a small catchment in Qilian Mountains,northwestern China.A typical characteristic of soil in mountainous areas is widespread presence of rock and gravel,and the results showed that the more rock and gravel in the soil,the higher Ks and bulk density and the lower the soil capillary porosity,field water capacity and total porosity.The Ks of the lower layer with rock and gravel(18.49±10.22 mm·min-1)was significantly higher than that of the upper layer with relatively fine textured soil(0.18±0.18 mm·min-1).The order of values of the Ks in different land cover types was alpine barren,forest,alpine shrub,marshy meadow and alpine meadow,and the values of the Ks in the alpine barren were significantly higher than those of other land covers.Most rainfall events in the research catchment had low rain intensity(<0.04 mm·min-1),and deep percolation(DP)was the dominant runoff generation type.When the rainfall intensity increased(0.11 mm·min-1),subsurface stormflow(SSF)appeared in the alpine meadow.Infiltration excess overland flow(IOF),SSF and DP existed simultaneously only when the rainfall intensity was extremely high(1.91 mm·min-1).IOF and SSF were almost never appeared in the alpine barren because of high Ks.The alpine barren was the main runoffcontributed area in the mountainous catchment because of high Ks and low water-holding capacity,and the alpine shrub and meadow showed more ecological functions such as natural water storage and replenishment pool than contribution of runoff.展开更多
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
Oasisization is a process of converting a natural desert into a man-made oasis in order to satisfy social needs under certain economical and technical conditions. This paper substitutes space for time in order to stud...Oasisization is a process of converting a natural desert into a man-made oasis in order to satisfy social needs under certain economical and technical conditions. This paper substitutes space for time in order to study physical property changes of oasis soil along the oasisization in about a 1,000-year period. This research focuses on providing the bases for better understanding the process of oasisization. The results show: (1) In about 1,000-year chronological scale, the bulk density and the saturated soil hydraulic conductivity of the surface layer (0-20 cm) significantly reduced with the increase of land reclamation time, while soil porosity, stability of aggregates, and silt content significantly increased. The soil bulk density of the unreclaimed filed (0 year) and the reclaimed field (about 1,000 years) in the surface layer (0-20 cm) are 1.51 g/cm3 and 1.35 g/cm3, the total porosity are 43.16% and 49.27%, the capillary porosity are 38.73% and 47.10%, the water-stable aggregate (】0.25 mm) content are 24.60% and 49.59%, the sand content are 85.42% and 61.56%, the clay content are 3.93% and 4.80%, the specific surface area are 128 cm2/g and 231 cm2/g, and the saturated hydraulic conductivity are 0.74 cm/h and 0.34 cm/h, respectively. (2) In the first 30 years of the oasis reclamation, the changes are relatively fast, and the rates of the saturated soil hydraulic conductivity, dry aggregate (】0.25 mm), water-stable aggregate (】0.25 mm) content, and specific surface area are 0.01 cm/h·yr, 0.58%/yr, 0.50%/yr, and 1.48 cm2/g yr, respectively.展开更多
Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weigh...Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period.展开更多
Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the ef...Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the effects of tillage and cover crop management on soil hydraulic properties. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m in length and 12.2 m in width. Treatment factors were tillage at two levels (moldboard plow tillage vs. no tillage) and cover crop at two levels (cereal rye (Secale cereal) cover crop vs. no cover crop). Soil samples were collected in late spring/early summer from each treatment at 10-cm depth increments from the soil surface to a depth of 40 cm using cores (76.2-mm diameter and 76.2-mm length). Soil bulk density was 13% lower with tillage compared with no-tillage. Volumetric water content was significantly higher at 0.0 and -0.4 kPa pressures with tillage compared with no tillage. Tillage increased the proportion of coarse mesopores by 32gc compared with no tillage, resulting in 87% higher saturated hydraulic conductivity (Ksat). Cover crop increased the proportion of macropores by 24~ compared with no cover crop; this can potentially increase water infiltration and reduce runoff. As a result of higher macroporosity, Ksat was higher under cover crop compared with no cover crop. This study demonstrated that tillage can benefit soil hydraulic properties in the short term, but these effects may not persist over time. Cover crops may slightly improve soil hydraulic properties, but longer term studies are needed to evaluate the long-term effects.展开更多
A permanent collapsing gully,locally called Benggang,formed on slopes with deep granite red soil and is a type of unique gully erosion widely prevalent in southern China.Three different soil configurations(SC),ie,red-...A permanent collapsing gully,locally called Benggang,formed on slopes with deep granite red soil and is a type of unique gully erosion widely prevalent in southern China.Three different soil configurations(SC),ie,red-transition-sandy(SC I,the transition is the soil layer between the red soil and the sandy soil layer),transition-sandy(SC II)or sandy(SC III)are usually present in the soil profile of the Benggang slope.However,little attention has been paid to impacts of SCs on the triggering of Benggang erosion.In this study,we aimed to explore the relationships between soil water content(SWC)and triggering of Benggang erosion under different SC conditions.The soil properties of different soil layers were measured and the SWC at depths of 20,40,60,and 80 cm were monitored at 5-min intervals along a typical Benggang(SC I)during 2016-2018.The SWC of Benggang slopes with different SCs were simulated by VADOSE/W model.Results showed that the red soil layer had a higher water retention capacity and shear strength than the sandy soil layer.Even if the SWC is higher(e.g.,0.42 cm^(3)/cm^(3))at red soil layer or transition layer,the corresponding shear strength is greater than that of sandy soil layer with a lower SWC(e.g.,032 cm^(3)/cm^(3)).Relationships between shear strength and SWC of different soil layers indicate that Benggang erosion is triggered by an increase in the SWC in the deep sandy layer.Results also showed that differences exist in the SWC distribution among the different SCs.The SWC is higher in topsoil than in deeper soil in SC I and SC II,while in SC III,the opposite trend is observed.These results revealed that the presence of the red soil or transition layer can reduce the infiltration of rainwater into the deep sandy layer,thus can reduce the possibility of collapse.Our results show that the SC affects the stability of the headwall,and results provide great significances to guide the mitigation of Benggang erosion.展开更多
Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primar...Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primary objective of this study was to construct soil quality index(SQI)to assess the influence of different vegetation restoration types on soil quality in collapsing gully restoration.The influence of five vegetation restoration types on soil properties was investigated by using a path analysis,a comprehensive soil quality index(SQI),and a general linear model(GLM).Vegetation restoration was shown to significantly increase the saturated hydraulic conductivity(Ks),mainly due to the effect of the physical parameters of bulk density,soil cohesion,and soil water content.Meanwhile,pH,Ks,soil organic matter(OM),and sand content were revealed as reasonable indicators to evaluate the influence of vegetation restoration on soil quality.Moreover,vegetation restoration was found to significantly improve the soil quality,with the highest SQI value for natural restoration mixed forest(NF),followed by replanted arboreal forest(RA)and replanted scrubland(RS),which were all significantly higher than the SQI value of the erosion area(EA)in the collapsing gully.Additionally,vegetation type explained the most substantial proportion of total variability(46.41%),and restoration time showed a positive correlation with SQI.The results of this study can provide a reference for the restoration and protection of the regional ecological environment in the collapsing gully area.展开更多
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金support from the Ministry of Economy, Trade, and Industry (METI) of Japanfunding support from Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0122)
文摘Kozeny-Carman(KC) equation is a well-known relation between hydraulic conductivity and pore properties in porous material. The applications of KC equation to predicting saturated hydraulic conductivities of sands and non-expansive soils are well documented. However, KC equation is incapable of predicting saturated hydraulic conductivity of expansive soil(e.g. bentonite) well. Based on a new dualpore system, this study modified KC equation for improving the prediction of saturated hydraulic conductivities of bentonites. In this study, an assumption that inter-layer space(micropore) has limited effect on fluid flow performance of compacted bentonite was adopted. The critical parameters including total porosity and total tortuosity in conventional KC equation were replaced by macroporosity and tortuosity of macropore, respectively. Macroporosity and microporosity were calculated by basal spacing of compacted bentonite, which was estimated by assuming that specific surface area is changeable during saturation process. A comprehensive comparison of bentonite’s saturated hydraulic conductivity predictions, including modified KC equation proposed in this study, conventional KC equation, and prediction method based on diffuse double layer(DDL) theory, was carried out. It was found that the predicted saturated hydraulic conductivity of bentonites calculated using modified KC equation fitted the experimental data better than others to a certain extent.
基金National NaturalScience Foundation grant (40474178, 30230290)Shaanxi Provincial Office of Education special projects (05JK241)
文摘Saturated hydraulic conductivity (Ks) is an important soil hydraulic parameter for charactering the rate of water flow across the soils and is mainly related to its high spatial variability. In a small watershed with the area of 0.27 km2 in the Loess Plateau, Ks of 197 soil samples under different vegetations and landforms were measured. Ks had a moderate variability for total samples. The forestland had high Ks with low coefficient of variation (CV), but the grassland in the watershed bottom had low Ks with big CV. Ks had moderate correlation in space distribution and combined both structural and random factors. At the N-S and E-W directions of watershed being parallel and normal to the stream valley, Ks had relatively weak correlation, indicating that the random factor was the dominate reason causing spatial variance. At the NE-SW and SE-NW directions, Ks had relatively strong correlation due to structural factors such as geomorphology and vegetation distribution patterns. Kriging optimal estimation method was used to produce Ks contour map. The Kriging standard deviation (SD) was the lowest near the sampling points, and increased along with the distance to sampling points. In the Loess Plateau region, soil texture is relatively even, and the vegetation distribution pattern was the key factor affecting spatial variability of Ks.
基金financial support from the National Natural Sciences Foundation of China(Nos.41401041,41690141 and 41671029)。
文摘As an important soil property,saturated hydraulic conductivity(Ks)controls many hydrological processes,such as runoff generation types,soil moisture storage and water movement.Because of the extremely harsh natural environmental conditions and soil containing a significant fraction of gravel fragments in high-elevation mountainous catchments,the measurement data of Ks and other soil properties are seriously lacking,which leads to poor understanding on its hydrological processes and water cycle.In this study,the vertical variation(0-150 cm)of Ks and other soil properties from 38 soil profiles were measured under five different land cover types(alpine barren,forest,marshy meadow,alpine shrub and alpine meadow)in a small catchment in Qilian Mountains,northwestern China.A typical characteristic of soil in mountainous areas is widespread presence of rock and gravel,and the results showed that the more rock and gravel in the soil,the higher Ks and bulk density and the lower the soil capillary porosity,field water capacity and total porosity.The Ks of the lower layer with rock and gravel(18.49±10.22 mm·min-1)was significantly higher than that of the upper layer with relatively fine textured soil(0.18±0.18 mm·min-1).The order of values of the Ks in different land cover types was alpine barren,forest,alpine shrub,marshy meadow and alpine meadow,and the values of the Ks in the alpine barren were significantly higher than those of other land covers.Most rainfall events in the research catchment had low rain intensity(<0.04 mm·min-1),and deep percolation(DP)was the dominant runoff generation type.When the rainfall intensity increased(0.11 mm·min-1),subsurface stormflow(SSF)appeared in the alpine meadow.Infiltration excess overland flow(IOF),SSF and DP existed simultaneously only when the rainfall intensity was extremely high(1.91 mm·min-1).IOF and SSF were almost never appeared in the alpine barren because of high Ks.The alpine barren was the main runoffcontributed area in the mountainous catchment because of high Ks and low water-holding capacity,and the alpine shrub and meadow showed more ecological functions such as natural water storage and replenishment pool than contribution of runoff.
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.
文摘Oasisization is a process of converting a natural desert into a man-made oasis in order to satisfy social needs under certain economical and technical conditions. This paper substitutes space for time in order to study physical property changes of oasis soil along the oasisization in about a 1,000-year period. This research focuses on providing the bases for better understanding the process of oasisization. The results show: (1) In about 1,000-year chronological scale, the bulk density and the saturated soil hydraulic conductivity of the surface layer (0-20 cm) significantly reduced with the increase of land reclamation time, while soil porosity, stability of aggregates, and silt content significantly increased. The soil bulk density of the unreclaimed filed (0 year) and the reclaimed field (about 1,000 years) in the surface layer (0-20 cm) are 1.51 g/cm3 and 1.35 g/cm3, the total porosity are 43.16% and 49.27%, the capillary porosity are 38.73% and 47.10%, the water-stable aggregate (】0.25 mm) content are 24.60% and 49.59%, the sand content are 85.42% and 61.56%, the clay content are 3.93% and 4.80%, the specific surface area are 128 cm2/g and 231 cm2/g, and the saturated hydraulic conductivity are 0.74 cm/h and 0.34 cm/h, respectively. (2) In the first 30 years of the oasis reclamation, the changes are relatively fast, and the rates of the saturated soil hydraulic conductivity, dry aggregate (】0.25 mm), water-stable aggregate (】0.25 mm) content, and specific surface area are 0.01 cm/h·yr, 0.58%/yr, 0.50%/yr, and 1.48 cm2/g yr, respectively.
基金This study was jointly supported by the National Key Research and Development Project of China(No.2016YFD0200303)the Natural Science Foundation of China-Shandong Joint Key Project(Nos.U 1806215 and U1906221)+1 种基金the Key Project of Chinese Academy of Sciences(No.KFZD-SW-112-03-02)the National Natural Science Foundation of China(No.41977015).
文摘Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period.
基金funded by the USDA-National Institute of Food and Agriculture (NIFA) research (Cropping Systems Coordinated Agricultural Project: Climate Change Mitigation, and Adaptation in Cornbased Cropping Systems) grant (No. 2011-68002-30190)
文摘Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the effects of tillage and cover crop management on soil hydraulic properties. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m in length and 12.2 m in width. Treatment factors were tillage at two levels (moldboard plow tillage vs. no tillage) and cover crop at two levels (cereal rye (Secale cereal) cover crop vs. no cover crop). Soil samples were collected in late spring/early summer from each treatment at 10-cm depth increments from the soil surface to a depth of 40 cm using cores (76.2-mm diameter and 76.2-mm length). Soil bulk density was 13% lower with tillage compared with no-tillage. Volumetric water content was significantly higher at 0.0 and -0.4 kPa pressures with tillage compared with no tillage. Tillage increased the proportion of coarse mesopores by 32gc compared with no tillage, resulting in 87% higher saturated hydraulic conductivity (Ksat). Cover crop increased the proportion of macropores by 24~ compared with no cover crop; this can potentially increase water infiltration and reduce runoff. As a result of higher macroporosity, Ksat was higher under cover crop compared with no cover crop. This study demonstrated that tillage can benefit soil hydraulic properties in the short term, but these effects may not persist over time. Cover crops may slightly improve soil hydraulic properties, but longer term studies are needed to evaluate the long-term effects.
基金Financial support for this research was provided by the National Natural Science Foundation of China(No.41571258,42007055 and 41630858).
文摘A permanent collapsing gully,locally called Benggang,formed on slopes with deep granite red soil and is a type of unique gully erosion widely prevalent in southern China.Three different soil configurations(SC),ie,red-transition-sandy(SC I,the transition is the soil layer between the red soil and the sandy soil layer),transition-sandy(SC II)or sandy(SC III)are usually present in the soil profile of the Benggang slope.However,little attention has been paid to impacts of SCs on the triggering of Benggang erosion.In this study,we aimed to explore the relationships between soil water content(SWC)and triggering of Benggang erosion under different SC conditions.The soil properties of different soil layers were measured and the SWC at depths of 20,40,60,and 80 cm were monitored at 5-min intervals along a typical Benggang(SC I)during 2016-2018.The SWC of Benggang slopes with different SCs were simulated by VADOSE/W model.Results showed that the red soil layer had a higher water retention capacity and shear strength than the sandy soil layer.Even if the SWC is higher(e.g.,0.42 cm^(3)/cm^(3))at red soil layer or transition layer,the corresponding shear strength is greater than that of sandy soil layer with a lower SWC(e.g.,032 cm^(3)/cm^(3)).Relationships between shear strength and SWC of different soil layers indicate that Benggang erosion is triggered by an increase in the SWC in the deep sandy layer.Results also showed that differences exist in the SWC distribution among the different SCs.The SWC is higher in topsoil than in deeper soil in SC I and SC II,while in SC III,the opposite trend is observed.These results revealed that the presence of the red soil or transition layer can reduce the infiltration of rainwater into the deep sandy layer,thus can reduce the possibility of collapse.Our results show that the SC affects the stability of the headwall,and results provide great significances to guide the mitigation of Benggang erosion.
基金the National Natural Science Foundation of China(41630858)the National Key Research and Development Program of China(2017YFC0505404)the National Natural Science Foundation of China(41771304).
文摘Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primary objective of this study was to construct soil quality index(SQI)to assess the influence of different vegetation restoration types on soil quality in collapsing gully restoration.The influence of five vegetation restoration types on soil properties was investigated by using a path analysis,a comprehensive soil quality index(SQI),and a general linear model(GLM).Vegetation restoration was shown to significantly increase the saturated hydraulic conductivity(Ks),mainly due to the effect of the physical parameters of bulk density,soil cohesion,and soil water content.Meanwhile,pH,Ks,soil organic matter(OM),and sand content were revealed as reasonable indicators to evaluate the influence of vegetation restoration on soil quality.Moreover,vegetation restoration was found to significantly improve the soil quality,with the highest SQI value for natural restoration mixed forest(NF),followed by replanted arboreal forest(RA)and replanted scrubland(RS),which were all significantly higher than the SQI value of the erosion area(EA)in the collapsing gully.Additionally,vegetation type explained the most substantial proportion of total variability(46.41%),and restoration time showed a positive correlation with SQI.The results of this study can provide a reference for the restoration and protection of the regional ecological environment in the collapsing gully area.