Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin laye...Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.展开更多
计算流体力学是研究仿生机器鱼水动力特性的重要数值模拟方法,已在仿生学及海洋学等众多领域得到广泛应用。本文利用CNKI中文数据库及Web of Science核心合集数据库分别检索到201篇中文文献和146篇英文文献,运用Cite Space软件的文献计...计算流体力学是研究仿生机器鱼水动力特性的重要数值模拟方法,已在仿生学及海洋学等众多领域得到广泛应用。本文利用CNKI中文数据库及Web of Science核心合集数据库分别检索到201篇中文文献和146篇英文文献,运用Cite Space软件的文献计量学分析方法,对文献类型、期刊分布、发文量趋势、作者、研究机构和高被引文献进行了系统分析,并结合关键词网络知识图谱、关键词聚类图谱,探讨了计算流体力学在仿生机器鱼领域中的应用研究热点。结果表明:仿生机器鱼领域中外文献发文量呈现逐年上升趋势,且仿生类期刊及文献具有较高的影响因子与被引频次;研究学科领域涉及工程学、机器人学、力学与材料科学等多个交叉性学科;该领域内研究热点与重点方向为动力学模型、三维流场仿真、设计与制作。针对现有研究的不足,建议未来研究应深入探讨水生生物集群运动仿真、鱼类侧线感知机制和仿生机器鱼水动力试验,以期促进多学科融合,为仿生机器鱼的发展提供科学参考。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22075146)。
文摘Drying is a complicated physical process which involves simultaneous heat and mass transfer in the removal of solvents inside propellants.Inappropriate drying techniques may result in the formation of a hard skin layer near the surface to block the free access of most solvent through for long stick propellants with large web thickness,which lead to lower drying efficiency and worse drying quality.This study aims to gain a comprehensive understanding of drying process and clarify the mechanism of the blocked layer near the propellant surface.A new three-dimensional coupled heat and mass transfer(3D-CHMT)model was successfully developed under transient conditions.The drying experiment results show that the 3DCHMT model could be applied to describe the drying process well since the relative error of the content of solvent between simulation and experiment values is only 5.5%.The solvent behavior simulation demonstrates that the mass transfer process can be divided into super-fast(SF)and subsequent minorfast(MF)stages,and the SF stage is vital to the prevention of the blocked layer against the free access for solvent molecules inside propellant grains.The effective solvent diffusion coefficient(Deff)of the propellant surface initially increases from 3.4×10^(-6)to 5.3×10^(-6)m^(2)/s as the temperature increases,and then decreases to 4.1×10^(-8)m^(2)/s at 60-100 min.The value of Deffof surface between 0-1.4 mm has a unique trend of change compared with other regions,and it is much lower than that of the internal at100 min under simulation conditions.Meanwhile,the temperature of the propellant surface increases rapidly at the SF stage(0-100 min)and then very slowly thereafter.Both the evolution of Deffand temperature distribution demonstrate that the blocked layer near the propellant surface has been formed in the time period of approximately 0-100 min and its thickness is about 1.4 mm.To mitigate the formation of blocked layer and improve its drying quality of finial propellant products effectively,it should be initially dried at lower drying temperature(30-40℃)in 0-100 min and then dried at higher drying temperature(50-60℃)to reduce drying time for later drying process in double base gun propellants.The present results can provide theoretical guidance for drying process and optimization of drying parameters for long stick propellants with large web thickness.
文摘计算流体力学是研究仿生机器鱼水动力特性的重要数值模拟方法,已在仿生学及海洋学等众多领域得到广泛应用。本文利用CNKI中文数据库及Web of Science核心合集数据库分别检索到201篇中文文献和146篇英文文献,运用Cite Space软件的文献计量学分析方法,对文献类型、期刊分布、发文量趋势、作者、研究机构和高被引文献进行了系统分析,并结合关键词网络知识图谱、关键词聚类图谱,探讨了计算流体力学在仿生机器鱼领域中的应用研究热点。结果表明:仿生机器鱼领域中外文献发文量呈现逐年上升趋势,且仿生类期刊及文献具有较高的影响因子与被引频次;研究学科领域涉及工程学、机器人学、力学与材料科学等多个交叉性学科;该领域内研究热点与重点方向为动力学模型、三维流场仿真、设计与制作。针对现有研究的不足,建议未来研究应深入探讨水生生物集群运动仿真、鱼类侧线感知机制和仿生机器鱼水动力试验,以期促进多学科融合,为仿生机器鱼的发展提供科学参考。