The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b...The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods.展开更多
Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a ch...Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.展开更多
The quasi-zero-stiffness(QZS)vibration isolation has been proven to be an effective way to isolate low-frequency vibration.However,most of the existing QZS isolators are space-consuming,which could not be employed in ...The quasi-zero-stiffness(QZS)vibration isolation has been proven to be an effective way to isolate low-frequency vibration.However,most of the existing QZS isolators are space-consuming,which could not be employed in the space-limited circumstances.In this paper,a quite compact QZS isolator is engineered by connecting a pair of mutually repulsive magnet rings and a space-saving wave spring in parallel,called WQZS isolator.The restoring force of the magnet ring is derived by the equivalent magnetic charge method,and an empirical formula for the restoring force of the wave spring is derived by the least squares method based on experimental data.The dynamic model of the WQZS vibration isolation system is built,and the vibration isolation performance is evaluated through transmissibility.Finally,an experimental prototype is fabricated,and the experimental tests on frequency sweep are carried out.The results show that compared with the linear counterpart,the vibration isolation frequency of the WQZS isolator is reduced by 48.89%,and the peak transmissibility is decreased by 59.33%.Most importantly,the space occupancy of the WQZS isolator designed in this paper is much lower than that of the traditional QZS isolators,and thus it should be a potential solution for low-frequency vibration isolation in the space-limited environment.展开更多
基金This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401)in part by the 2022 Yeungnam University Research Grant.
文摘The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods.
基金This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540)National Research Foundation of Korea(NRF)grant funded by the Korea government,Ministry of Science and ICT(MSIT)(2021R1F1A1046339).
文摘Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972152,12002122 and 11832009)the Natural Science Foundation of Hunan Province(Grant No.2020JJ4208)China Postdoctoral Science Foundation(Grant No.2020M672476).
文摘The quasi-zero-stiffness(QZS)vibration isolation has been proven to be an effective way to isolate low-frequency vibration.However,most of the existing QZS isolators are space-consuming,which could not be employed in the space-limited circumstances.In this paper,a quite compact QZS isolator is engineered by connecting a pair of mutually repulsive magnet rings and a space-saving wave spring in parallel,called WQZS isolator.The restoring force of the magnet ring is derived by the equivalent magnetic charge method,and an empirical formula for the restoring force of the wave spring is derived by the least squares method based on experimental data.The dynamic model of the WQZS vibration isolation system is built,and the vibration isolation performance is evaluated through transmissibility.Finally,an experimental prototype is fabricated,and the experimental tests on frequency sweep are carried out.The results show that compared with the linear counterpart,the vibration isolation frequency of the WQZS isolator is reduced by 48.89%,and the peak transmissibility is decreased by 59.33%.Most importantly,the space occupancy of the WQZS isolator designed in this paper is much lower than that of the traditional QZS isolators,and thus it should be a potential solution for low-frequency vibration isolation in the space-limited environment.