A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)...A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction.展开更多
Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrow...Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.展开更多
Photocatalytic water splitting for hydrogen(H_(2))production is a green sustainable technology,in which highly-efficient steady photocatalysts are fundamentally required.In this work,unique CdS/Cd_(0.5)Zn_(0.5)S-M0_(1...Photocatalytic water splitting for hydrogen(H_(2))production is a green sustainable technology,in which highly-efficient steady photocatalysts are fundamentally required.In this work,unique CdS/Cd_(0.5)Zn_(0.5)S-M0_(1-x)W_(x)S_(2) photocatalyst constructed by CdS hollow nano-spheres with successively surface-modified Cd_(0.5)Zn_(0.5)S shell and defect-rich MO_(1-x)W_(x)S_(2) ultrathin nanosheets was reported for the first time.Interestingly,the Cd_(0.5)Zn_(0.5)S shell could greatly enhance the photo-stability and reduce the carrier recombination of CdS.Meanwhile,enriching active sites and accelerating charge transfer could be achieved via anchoring defect-rich Mo_(1-x)W_(x)S_(2) onto CdS/Cd_(0.5)Zn_(0.5)S hollow heterostructures.Specifically,the optimized CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)Sa(6 h Cd_(0.5)Zn_(0.5)S-coating,7 wt.%Mo_(1-x)W_(x)S_(2),x=0.5)hybrid delivered an exceptional H_(2) generation rate of 215.99 mmol·g^(-1)·h^(-1),which is approximately 502,134,and 23 times that of pure CdS,CdS/Cd_(0.5)Zn_(0.5)S,and 3 wt.%Pt-loaded CdS/Cd_(0.5)Zn_(0.5)S,respectively.Remarkably,a high H_(2) evolution reaction(HER)apparent quantum yield(AQY)of 64.81%was obtained under 420-nm irradiation.In addition,the CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)S_(2) was also durable for H2 production under long-term irradiation.This work provides valuable inspirations to rational design and synthesis of efficient and stable hybrid photocatalysts for solar energy conversion.展开更多
基金Projects(41977129,21607176,42007138) supported by the National Natural Science Foundation of ChinaProject(kq1802011) supported by the Changsha Outstanding Innovative Youth Training Program,ChinaProject(2017JJ3516)supported by the Natural Science Foundation of Hunan Province,China。
文摘A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction.
基金China Postdoctoral Science Foundation Project,Grant/Award Numbers:2020M680101,2021T140233Fundamental Research Funds for the Central Universities,Grant/Award Number:2021XXJS028+2 种基金National Natural Science Foundation of China,Grant/Award Numbers:61725401,61904058,62050039the Graduates'Innovation Fund of Huazhong University of Science and Technology,Grant/Award Number:2021yjsCXCY051the National Key R&D Program of China,Grant/Award Number:2016YFA0204000。
文摘Accurate and clear bioimaging is crucial in the field of medical diagnosis.High-quality bioimaging requires to avoid the effects of ambient light as well as the absorption of biological tissues.Nearinfrared(NIR)narrowband detectors located at wavelength from 650 to 900 nm can meet these requirements;thus,they are the potential solution.In this work,we construct a filter-free and self-power NIR narrowband photodetector based on the structure of n-CdSe/p-Sb_(2)(S_(1-x),Se_(x))_(3)heterojunction,and achieve a narrow spectral response at 735 nm with a full width at half-maximum of 35.3 nm in the detector.Further,the imaging characteristics of the NIR narrowband detector are explored,verifying the ability to narrowband detection and imaging.This filter-free and self-power NIR narrowband detector shows considerable promise in real-life applications.
基金support from the National Natural Science Foundation of China(Nos.51802170,51772162,and 21801150)the Natural Science Foundation of Shandong Province(Nos.ZR2019MB001,ZR2018BEM014,and ZR2019JQ14)+3 种基金the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)the Taishan Scholar Project of Shandong Province(No.ts201712047)the Special Fund Project to Guide Development of Local Science and Technology by Central Government,the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University(No.2019-22)the Taishan Scholar Program of Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology.
文摘Photocatalytic water splitting for hydrogen(H_(2))production is a green sustainable technology,in which highly-efficient steady photocatalysts are fundamentally required.In this work,unique CdS/Cd_(0.5)Zn_(0.5)S-M0_(1-x)W_(x)S_(2) photocatalyst constructed by CdS hollow nano-spheres with successively surface-modified Cd_(0.5)Zn_(0.5)S shell and defect-rich MO_(1-x)W_(x)S_(2) ultrathin nanosheets was reported for the first time.Interestingly,the Cd_(0.5)Zn_(0.5)S shell could greatly enhance the photo-stability and reduce the carrier recombination of CdS.Meanwhile,enriching active sites and accelerating charge transfer could be achieved via anchoring defect-rich Mo_(1-x)W_(x)S_(2) onto CdS/Cd_(0.5)Zn_(0.5)S hollow heterostructures.Specifically,the optimized CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)Sa(6 h Cd_(0.5)Zn_(0.5)S-coating,7 wt.%Mo_(1-x)W_(x)S_(2),x=0.5)hybrid delivered an exceptional H_(2) generation rate of 215.99 mmol·g^(-1)·h^(-1),which is approximately 502,134,and 23 times that of pure CdS,CdS/Cd_(0.5)Zn_(0.5)S,and 3 wt.%Pt-loaded CdS/Cd_(0.5)Zn_(0.5)S,respectively.Remarkably,a high H_(2) evolution reaction(HER)apparent quantum yield(AQY)of 64.81%was obtained under 420-nm irradiation.In addition,the CdS/Cd_(0.5)Zn_(0.5)S-Mo_(1-x)W_(x)S_(2) was also durable for H2 production under long-term irradiation.This work provides valuable inspirations to rational design and synthesis of efficient and stable hybrid photocatalysts for solar energy conversion.