The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectr...The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.展开更多
The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray...The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.展开更多
The effect of homogenization on the hardness,tensile properties,electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied.The results show that during homogenization as-cast st...The effect of homogenization on the hardness,tensile properties,electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied.The results show that during homogenization as-cast studied alloy has obviously hardening effect that is similar to aging hardening behavior in traditional Al alloys.The precipitates are mainly Al3(Sc,Zr)and Al6Mn.When homogenization temperature increases the hardness peak value is declined and the time corresponding to hardness peak value is shortened.The electrical conductivity of the alloy monotonously increases with increasing homogenization temperature and time.The decomposition of the supersaturated solid solution containing Sc and Zr which is formed during direct chilling casting and the precipitation of Al3(Sc,Zr)cause hardness increasing.The depletion of the matrix solid solubility decreases the ability of electron scattering in the alloy,resulting in the electrical conductivity increased.Tensile property result at hot rolling state shows that the optimal homogenization treatment processing is holding at 300-350 ℃ for 6-8 h.展开更多
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe...A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.展开更多
基金the project of the Czech Science Foundation (No.20-19170S)the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG))for financial support within the scope of project (No.SCHA 1484/46-1).
基金Project (2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The microstructural evolution and composition distribution of an Al-Zn-Cu-Mg-Sc-Zr alloy during homogenization were investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),X-ray diffraction(XRD) and differential scanning calorimetry(DSC).The results show that severe dendritic segregation exists in Al-Zn-Cu-Mg-Sc-Zr alloy ingot.There are a lot of eutectic phases at grain boundary and the distribution of the main elements varies periodically along interdendritic region.The main eutectic phases at grain boundary are Al7Cu2Fe phase and T(Al2Mg3Zn3).The residual phases are dissolved into the matrix gradually during homogenization with increasing temperature and prolonging holding time,which can be described by a constitutive equation in exponential function.The overburnt temperature of the alloy is 473.9 ℃.The optimum parameters of homogenization are 470 ℃ and 24 h,which is consistent with the result of homogenization kinetic analysis.
基金Project (2012CB619503) supported by the National Basic Research Program of China
文摘The microstructural evolution of Al-Zn-Mg-Zr alloy with trace amount of Sc during homogenization treatment was studied by means of metallographic analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and differential scanning calorimetry (DSC). The results show that serious dendritic segregation exists in studied alloy ingot. There are many eutectic phases with low melting-point at grain boundary and the distribution of main elements along interdendritic region varies periodically. Elements Zn, Mg and Cu distribute unevenly from grain boundary to the inside of alloy. With increasing the homogenization temperature or prolonging the holding time, the residual phases are dissolved into matrix α(Al) gradually during homogenization treatment, all elements become more homogenized. The overburnt temperature of studied alloy is 476.7 °C. When homogenization temperature increases to 480 °C, some spherical phases and redissolved triangular constituents at grain boundaries can be easily observed. Combined with microstructural evolution and differential scanning calorimeter, the optimum homogenization parameter is at 470 °C for 24 h.
基金Project(2005CB623705-01) supported by the National Key Fundamental Research and Development Program of ChinaProject(MKPT-2004-16ZD) supported by the National 10th Five-Year Plan Program
文摘The effect of homogenization on the hardness,tensile properties,electrical conductivity and microstructure of as-cast Al-6Mg-0.4Mn-0.25Sc-0.12Zr alloy was studied.The results show that during homogenization as-cast studied alloy has obviously hardening effect that is similar to aging hardening behavior in traditional Al alloys.The precipitates are mainly Al3(Sc,Zr)and Al6Mn.When homogenization temperature increases the hardness peak value is declined and the time corresponding to hardness peak value is shortened.The electrical conductivity of the alloy monotonously increases with increasing homogenization temperature and time.The decomposition of the supersaturated solid solution containing Sc and Zr which is formed during direct chilling casting and the precipitation of Al3(Sc,Zr)cause hardness increasing.The depletion of the matrix solid solubility decreases the ability of electron scattering in the alloy,resulting in the electrical conductivity increased.Tensile property result at hot rolling state shows that the optimal homogenization treatment processing is holding at 300-350 ℃ for 6-8 h.
基金financial supports from the National Natural Science Foundation of China (No.51804349)the China Postdoctoral Science Foundation (No.2018M632986)+1 种基金the Natural Science Foundation of Hunan Province,China (No.2019JJ50766)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China (No.JCKY201851)。
文摘A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.