Oceanic nutrient cycling plays a key role in understanding how oceanic biogeochemical parameters respond in varying physical and anthropogenically controlled processes. OA (Objective Analysis) of monthly climatology...Oceanic nutrient cycling plays a key role in understanding how oceanic biogeochemical parameters respond in varying physical and anthropogenically controlled processes. OA (Objective Analysis) of monthly climatology of WOAI3 (World Ocean Atlas 13) nutrient data of 5 km resolution called Nutrient-Climo has been done in this paper for analyzing the nutrient-rich region in the BOB (Bay of Bengal) and the mechanisms of physical forces were examined using six years (2002-2007) global ocean monthly analysis datasets based on the SODA v2.0.4 (Simple Ocean Data Assimilation package). The upwelled zones established from the circulation pattern were well synchronized with the nitrate rich zones. The POC (particulate organic carbon) of 5 km resolution has been analyzed from MODIS (Moderate-resolution Imaging Spectroradiometer) data and Chl a (Chlorophyll a) concentration SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data of 9 km resolution are used to predict the productive zones in the BOB. In this paper, we examined that Chl a concentration (above 0.5 mg/m3) is found during the post-monsoon followed by winter in the north-western, north-eastern coast and head BOB as the source of nutrients is also supplementary due to high input of litter and sediment associated nutrients that are released during estuarine transport.展开更多
文摘Oceanic nutrient cycling plays a key role in understanding how oceanic biogeochemical parameters respond in varying physical and anthropogenically controlled processes. OA (Objective Analysis) of monthly climatology of WOAI3 (World Ocean Atlas 13) nutrient data of 5 km resolution called Nutrient-Climo has been done in this paper for analyzing the nutrient-rich region in the BOB (Bay of Bengal) and the mechanisms of physical forces were examined using six years (2002-2007) global ocean monthly analysis datasets based on the SODA v2.0.4 (Simple Ocean Data Assimilation package). The upwelled zones established from the circulation pattern were well synchronized with the nitrate rich zones. The POC (particulate organic carbon) of 5 km resolution has been analyzed from MODIS (Moderate-resolution Imaging Spectroradiometer) data and Chl a (Chlorophyll a) concentration SeaWiFS (Sea-viewing Wide Field-of-view Sensor) data of 9 km resolution are used to predict the productive zones in the BOB. In this paper, we examined that Chl a concentration (above 0.5 mg/m3) is found during the post-monsoon followed by winter in the north-western, north-eastern coast and head BOB as the source of nutrients is also supplementary due to high input of litter and sediment associated nutrients that are released during estuarine transport.