A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the res...A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.展开更多
Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-typ...Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains f...This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains finite scenarios. For different scenario, the demand may be changed, which seems much more reasonable in practical programming. By using the linear scalarization method,we introduce several definitions of parametric equilibrium flows and reveal their mutual relations. Meanwhile, the relationships between the scalar variational inequality as well as the(weak) vector equilibrium flows are explored, meanwhile, some necessary and sufficient conditions that ensure the(weak) vector equilibrium flows are also considered. Additionally, by means of nonlinear scalarization functionals, two kinds of equilibrium principles are derived. All of the derived conclusions contain the demands uncertainty and capacity constraints of arcs, thus the results proposed in this paper improved some existing works. Finally, some numerical examples are employed to show the merits of the improved conclusions.展开更多
文摘A scalar equilibrium (SE) is defined for n-person prescriptive games in normal form. When a decision criterion (notion of rationality) is either agreed upon by the players or prescribed by an external arbiter, the resulting decision process is modeled by a suitable scalar transformation (utility function). Each n-tuple of von Neumann-Morgenstern utilities is transformed into a nonnegative scalar value between 0 and 1. Any n-tuple yielding a largest scalar value determines an SE, which is always a pure strategy profile. SEs can be computed much faster than Nash equilibria, for example;and the decision criterion need not be based on the players’ selfishness. To illustrate the SE, we define a compromise equilibrium, establish its Pareto optimality, and present examples comparing it to other solution concepts.
文摘Using the principle of analytical geometry, several properties of the space straight lille are proved. Based on these properties, the equilibrium of general space force system is considered and its four new scalar-type equilibrium equations are derived which are equivalent to the vector-type necessary and sufficient conditions far equilibrium.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573096,61272530 and 61573106)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012741)the “333 Engineering” Foundation of Jiangsu Province of China(Grant No.BRA2015286)
文摘This paper focuses on the vector traffic network equilibrium problem with demands uncertainty and capacity constraints of arcs, in which, the demands are not exactly known and assumed as a discrete set that contains finite scenarios. For different scenario, the demand may be changed, which seems much more reasonable in practical programming. By using the linear scalarization method,we introduce several definitions of parametric equilibrium flows and reveal their mutual relations. Meanwhile, the relationships between the scalar variational inequality as well as the(weak) vector equilibrium flows are explored, meanwhile, some necessary and sufficient conditions that ensure the(weak) vector equilibrium flows are also considered. Additionally, by means of nonlinear scalarization functionals, two kinds of equilibrium principles are derived. All of the derived conclusions contain the demands uncertainty and capacity constraints of arcs, thus the results proposed in this paper improved some existing works. Finally, some numerical examples are employed to show the merits of the improved conclusions.