Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages o...Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe.This is achieved with self-sensing and self-actuating cantilevers,also known as‘active'cantilevers.Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy(<100 eV)electron exposure to thin films of molecular resist.By tuning the electron energies to the lithographically relevant chemical resist transformations,the interaction volumes can be highly localized.This method allows for greater control over spatially confined lithography and enhances sensitivity.We found that at low electron energies,the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event.The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV.By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material(positive tone)is presented.展开更多
Scanning Dammann lithography (SDL) is proposed and implemented, which uses a Danunann grating to generate multiple beams with sharp step boundary for writing large-sized gratings efficiently. One of the most attract...Scanning Dammann lithography (SDL) is proposed and implemented, which uses a Danunann grating to generate multiple beams with sharp step boundary for writing large-sized gratings efficiently. One of the most attractive advantages is that this technique can accelerate tile writing speed, e.g. 1×32 Damnlann grating can be 32 times faster than the single laser scanning system. More importantly, the uniformity of the multi-beams-written lines is much better than the single la.ser beam scanning system in consideration of the environlnental effects such as air turbulence, thermal instability, etc. Using the SDL system, a three-port high-efficiency beam splitter at visible wavelengths is fabricated quickly, and the theoretical and experimental diffraction efficiencies are both higher than 90%. Therefore, SDL should be a useful tool for fabrication of large-sized gratings.展开更多
Atom lithography is a unique method to fabricate self-traceable pitch standards and angle standards,but extending its structure area to millimeter-level for application is challenging.In this paper,on the one hand,we ...Atom lithography is a unique method to fabricate self-traceable pitch standards and angle standards,but extending its structure area to millimeter-level for application is challenging.In this paper,on the one hand,we put forward a new approach to fabricate a full-covered self-traceable Cr nanograting by inserting and scanning a Dove prism in the Gaussian beam direction of atom lithography.On the other hand,we extend the structure area along the standing-wave direction by splicing two-step atom deposition.Both nanostructures manufactured via scanning atom lithography and splicing atom lithography demonstrate good pitch accuracy,parallelism,continuity,and homogeneity,which opens a new way to fabricate centimeter-level full-covered self-traceable nanograting and lays the basis for the application of square ruler and optical encoders at the nanoscale.展开更多
To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a l...To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a large beam angle(or position)overshoot exceeding the detector range while also speeding up the convergence,a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed.The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation.The results show that the proposed iterative algorithm can be used to suppress the beam angle(or position)overshoot,avoiding alignment failure caused by over-ranging.In addition,the convergence speed can be effectively increased.The algorithm proposed can optimize the beam alignment process in SBIL.展开更多
Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface...Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN, Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that. DPN can be used to perform chemistry at the tip of a scanning probe.展开更多
Photodetectors based on two-dimensional(2D)semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications.How...Photodetectors based on two-dimensional(2D)semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications.However,the unique morphology of 2D materials also restricts the further improvement of the device performance,as the carrier transport is very susceptible to intrinsic and extrinsic environment of the materials.Here,we report the highest responsivity(172 A/W)achieved so far for a PbI_(2)-based photodetector at room temperature,which is an order of magnitude higher than previously reported.Thermal scanning probe lithography(t-SPL)was used to pattern electrodes to realize the ultrashort channel(~60 nm)in the devices.The shortening of the channel length greatly reduces the probability of the photo-generated carriers being scattered during the transport process,which increases the photocurrent density and thus the responsivity.Our work shows that the combination of emerging processing technologies and 2D materials is an effective route to shrink device size and improve device performance.展开更多
The broad availability of high throughput nanostructure fabrication is essential for advancement in nanoscale science. Large-scale manufacturing developed by the semiconductor industry is often too resource-intensive ...The broad availability of high throughput nanostructure fabrication is essential for advancement in nanoscale science. Large-scale manufacturing developed by the semiconductor industry is often too resource-intensive for medium scale laboratory prototyping. We demonstrate the inexpensive wafer scale direct- write of Ge and Si nanostructures with a 4-inch mask aligner retrofitted with a conducting microstructured stamp. A bias applied between the stamp and an underlying silicon substrate results in the reaction of diphenylgermane and diphenylsilane precursors at the stamp--substrate interface to yield the direct- write of Ge and Si nanostructures in determined locations. With the increasing number of outdated mask aligners available from the semiconductor industry and an extensive library of liquid precursors, this strategy provides facile, inexpensive, wafer scale semiconductor direct-write for applications such as electronics, photonics, and photovoltaics.展开更多
文摘Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe.This is achieved with self-sensing and self-actuating cantilevers,also known as‘active'cantilevers.Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy(<100 eV)electron exposure to thin films of molecular resist.By tuning the electron energies to the lithographically relevant chemical resist transformations,the interaction volumes can be highly localized.This method allows for greater control over spatially confined lithography and enhances sensitivity.We found that at low electron energies,the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event.The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV.By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material(positive tone)is presented.
基金the National Natural Science Foundation of China(Nos.61307064 and 61127013)the Ministry of Science and Technology of the Peo-ple’s Republic of China(No.2012YQ170004).
文摘Scanning Dammann lithography (SDL) is proposed and implemented, which uses a Danunann grating to generate multiple beams with sharp step boundary for writing large-sized gratings efficiently. One of the most attractive advantages is that this technique can accelerate tile writing speed, e.g. 1×32 Damnlann grating can be 32 times faster than the single laser scanning system. More importantly, the uniformity of the multi-beams-written lines is much better than the single la.ser beam scanning system in consideration of the environlnental effects such as air turbulence, thermal instability, etc. Using the SDL system, a three-port high-efficiency beam splitter at visible wavelengths is fabricated quickly, and the theoretical and experimental diffraction efficiencies are both higher than 90%. Therefore, SDL should be a useful tool for fabrication of large-sized gratings.
基金supported by Significant Development Project of Shanghai Zhangjiang National Innovation Benchmarking Zone(Grant No.ZJ2021-ZD-008)National Natural Science Foundation of China(Grant No.62075165)+3 种基金Science and Technology Commission of Shanghai(Grant No.208014043)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central UniversitiesOpening Fund from Shanghai Key Laboratory of Online Detection and Control Technology of SIMT.
文摘Atom lithography is a unique method to fabricate self-traceable pitch standards and angle standards,but extending its structure area to millimeter-level for application is challenging.In this paper,on the one hand,we put forward a new approach to fabricate a full-covered self-traceable Cr nanograting by inserting and scanning a Dove prism in the Gaussian beam direction of atom lithography.On the other hand,we extend the structure area along the standing-wave direction by splicing two-step atom deposition.Both nanostructures manufactured via scanning atom lithography and splicing atom lithography demonstrate good pitch accuracy,parallelism,continuity,and homogeneity,which opens a new way to fabricate centimeter-level full-covered self-traceable nanograting and lays the basis for the application of square ruler and optical encoders at the nanoscale.
基金The research was supported by the National Natural Science Foundation of China(NSFC)(Grant No.61227901)Jilin Province Science&Technology Development Program Project in China(Grant No.20190103157JH).
文摘To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a large beam angle(or position)overshoot exceeding the detector range while also speeding up the convergence,a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed.The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation.The results show that the proposed iterative algorithm can be used to suppress the beam angle(or position)overshoot,avoiding alignment failure caused by over-ranging.In addition,the convergence speed can be effectively increased.The algorithm proposed can optimize the beam alignment process in SBIL.
基金Acknowledgements C.A.M. acknowledges the U. S. Air Force Office of Scientific Research (AFOSR, Awards FA9550-12-1-0280 and FA9550-12-1-0141), the Defense Advanced Research Projects Agency (DARPA, Award N66001-08-1-2044) and the National Science Foundation (NSF, Awards DBI-1152139 and DMB-1124131) for support of this research. K. A. B. and X. L. gratefully acknowledges support from Northwestern University's International Institute for Nanotechnology. D. J. E. acknowledges the DoD and AFOSR for a National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
文摘Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN, Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that. DPN can be used to perform chemistry at the tip of a scanning probe.
基金supported by the National Key R&D Program of China (Grant Nos.2020YFA0308900 and 2022YFB3602801)the National Natural Science Foundation References of China (Grant No.92064010).
文摘Photodetectors based on two-dimensional(2D)semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications.However,the unique morphology of 2D materials also restricts the further improvement of the device performance,as the carrier transport is very susceptible to intrinsic and extrinsic environment of the materials.Here,we report the highest responsivity(172 A/W)achieved so far for a PbI_(2)-based photodetector at room temperature,which is an order of magnitude higher than previously reported.Thermal scanning probe lithography(t-SPL)was used to pattern electrodes to realize the ultrashort channel(~60 nm)in the devices.The shortening of the channel length greatly reduces the probability of the photo-generated carriers being scattered during the transport process,which increases the photocurrent density and thus the responsivity.Our work shows that the combination of emerging processing technologies and 2D materials is an effective route to shrink device size and improve device performance.
文摘The broad availability of high throughput nanostructure fabrication is essential for advancement in nanoscale science. Large-scale manufacturing developed by the semiconductor industry is often too resource-intensive for medium scale laboratory prototyping. We demonstrate the inexpensive wafer scale direct- write of Ge and Si nanostructures with a 4-inch mask aligner retrofitted with a conducting microstructured stamp. A bias applied between the stamp and an underlying silicon substrate results in the reaction of diphenylgermane and diphenylsilane precursors at the stamp--substrate interface to yield the direct- write of Ge and Si nanostructures in determined locations. With the increasing number of outdated mask aligners available from the semiconductor industry and an extensive library of liquid precursors, this strategy provides facile, inexpensive, wafer scale semiconductor direct-write for applications such as electronics, photonics, and photovoltaics.