An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two hig...An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function. Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
In this paper, three different tips are employed, i.e., the carbon nanotube tip, monocrystalline silicon tip and silicon nitride tip. Resorting to atomic force microscope (AFM), they are used for measuring the surfa...In this paper, three different tips are employed, i.e., the carbon nanotube tip, monocrystalline silicon tip and silicon nitride tip. Resorting to atomic force microscope (AFM), they are used for measuring the surface roughness of indium tin oxide (ITO) film and the immunoglobulin G (IgG) proteins within the scanning area of 10 μm×10 μm and 0.5 μm×0.5 μm, respectively. Subsequently, the scanned surface of the ITO film and IgG proteins are analyzed by using fractal dimension. The results show that the ffactal dimension measured by carbon nanotube tip is biggest with the highest frequency components and the most microscopic information. Therefore, the carbon nanotube tip is the ideal measuring tool for measuring super-smooth surface, which will play a more and more important role in the high-resolution imaging field.展开更多
Ordinary AFM probes'characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young's modulus, unique chemical ...Ordinary AFM probes'characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young's modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes ean accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.展开更多
The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)i...The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.展开更多
Several fundamental problems in hydrophobic force measurements using atomic force microscope (AFM) are dis-cussed in this paper. A novel method for colloid probe preparation based on chemical etching technology is pro...Several fundamental problems in hydrophobic force measurements using atomic force microscope (AFM) are dis-cussed in this paper. A novel method for colloid probe preparation based on chemical etching technology is proposed, which is specially fit for the unique demands of hydrophobic force measurements by AFM. The features of three different approaches for determining spring constants of rectangular cantilevers, including geometric dimension, Cleveland and Sader methods are com-pared. The influences of the sizes of the colloids on the measurements of the hydrophobic force curves are investigated. Our experimental results showed that by selecting colloid probe with proper spring constant and tip size, the hydrophobic force and the complete hydrophobic interaction force curve can be measured by using AFM.展开更多
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspecti...The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.展开更多
An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and ...An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.展开更多
Superlubricity provides a novel approach to addressing friction and wear issues in mechanical systems.However,little is known regarding improving the atomic force microscope(AFM)friction coefficient measurement resolu...Superlubricity provides a novel approach to addressing friction and wear issues in mechanical systems.However,little is known regarding improving the atomic force microscope(AFM)friction coefficient measurement resolution.Accordingly,this study established the theoretical formula for the AFM friction coefficient measurement and deduced the measurement resolution.Then,the formula was applied to the AFM probe with a rectangular cross-section cantilever.The measurement resolution is associated with the dimensional properties of the AFM probe,the mechanical properties of the cantilever material,the properties of the position-sensitive detector(PSD),and probably the anti-vibration performance of the AFM.It is feasible to make the cantilever as short as possible and the tip as high as possible to improve the measurement resolution.An AFM probe for measuring an ultra-low friction coefficient was designed and fabricated.The cantilever’s length,width,and thickness are 50,35,and 0.6μm,respectively.The tip height is 23μm.The measurement resolution can reach 7.1×10^(−6) under the maximum normal force.Moreover,the AFM probe was applied to measure the superlubricity between graphene layers.The friction coefficient is 0.00139 under 853.08 nN.This work provides a promising method for measuring a~10^(−5) friction coefficient of superlubricity.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50205006).
文摘An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function. Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
基金National Natural Science Foundation of China(No.50605012).
文摘In this paper, three different tips are employed, i.e., the carbon nanotube tip, monocrystalline silicon tip and silicon nitride tip. Resorting to atomic force microscope (AFM), they are used for measuring the surface roughness of indium tin oxide (ITO) film and the immunoglobulin G (IgG) proteins within the scanning area of 10 μm×10 μm and 0.5 μm×0.5 μm, respectively. Subsequently, the scanned surface of the ITO film and IgG proteins are analyzed by using fractal dimension. The results show that the ffactal dimension measured by carbon nanotube tip is biggest with the highest frequency components and the most microscopic information. Therefore, the carbon nanotube tip is the ideal measuring tool for measuring super-smooth surface, which will play a more and more important role in the high-resolution imaging field.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50202006)the Multidisciline Scientific Research Foundation of Harbin Institute of Technology (Grant No. HIT. MD. 2001.04)
文摘Ordinary AFM probes'characters prevent the AFM' s application in various scopes. Carbon nanotubes represent ideal AFM probe materials for their higher aspect ratio, larger Young's modulus, unique chemical structure, and well-defined electronic property. Carbon nanotube AFM probes are obtained by using a new method of attaching carbon nanotubes to the end of ordinary AFM probes, and are then used for doing AFM experiments. These experiments indicated that carbon nanotube probes have higher elastic deformation, higher resolution and higher durability. And it was also found that carbon nanotube probes ean accurately reflect the morphology of deep narrow gaps, while ordinary probes can not reflect.
基金financial support from the National Natural Science Foundation of China(No.51961026)。
文摘The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.
基金Project (No. 20276057) supported by the National Natural ScienceFoundation of China
文摘Several fundamental problems in hydrophobic force measurements using atomic force microscope (AFM) are dis-cussed in this paper. A novel method for colloid probe preparation based on chemical etching technology is proposed, which is specially fit for the unique demands of hydrophobic force measurements by AFM. The features of three different approaches for determining spring constants of rectangular cantilevers, including geometric dimension, Cleveland and Sader methods are com-pared. The influences of the sizes of the colloids on the measurements of the hydrophobic force curves are investigated. Our experimental results showed that by selecting colloid probe with proper spring constant and tip size, the hydrophobic force and the complete hydrophobic interaction force curve can be measured by using AFM.
文摘The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50205006)
文摘An improved arc discharge method is developed to fabricate the carbon nanotube probe. In this method, the silicon probe and the carbon nanotube were manipulated under an optical microscope. When the silicon probe and the carbon nanotube were very close, 30-60 V dc or ae was applied between them, and the carbon nanotube was divided and attached to the end of the silicon probe. Comparing with the arc discharge method, the new method need not coat the silicon probe with metal in advance, which can greatly reduce the fabrication difficulty and cost. The fabricated carbon nanotube probe exhibits the good property of high aspect ratio and can reflect the true topography more accurately than the silicon probe.
基金grateful for the financial support by the National Natural Science Foundation of China(51975488 and 51991373)the National Key R&D Program of China(2020YFA0711001 and 2018YFB2000400)+1 种基金Fundamental Research Funds for the Central Universities(2682021CG011)Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms(BZ0388201902).
文摘Superlubricity provides a novel approach to addressing friction and wear issues in mechanical systems.However,little is known regarding improving the atomic force microscope(AFM)friction coefficient measurement resolution.Accordingly,this study established the theoretical formula for the AFM friction coefficient measurement and deduced the measurement resolution.Then,the formula was applied to the AFM probe with a rectangular cross-section cantilever.The measurement resolution is associated with the dimensional properties of the AFM probe,the mechanical properties of the cantilever material,the properties of the position-sensitive detector(PSD),and probably the anti-vibration performance of the AFM.It is feasible to make the cantilever as short as possible and the tip as high as possible to improve the measurement resolution.An AFM probe for measuring an ultra-low friction coefficient was designed and fabricated.The cantilever’s length,width,and thickness are 50,35,and 0.6μm,respectively.The tip height is 23μm.The measurement resolution can reach 7.1×10^(−6) under the maximum normal force.Moreover,the AFM probe was applied to measure the superlubricity between graphene layers.The friction coefficient is 0.00139 under 853.08 nN.This work provides a promising method for measuring a~10^(−5) friction coefficient of superlubricity.