On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high ...On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high resolution estimation algorithm to extract the model parameters is also developed by building the relation of the scattering model and Prony model. The analysis of Cramer-Rao bound and simulation show that the method here has better statistical performance. The simulated analysis also indicates that the accurate extraction of the diffraction coefficient of scattering center is restricted by signal to noise ratio, radar center frequency and radar bandwidth.展开更多
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia...The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.展开更多
文摘On the conditions of low-resolution radar, a parametric model for two-dimensional radar target is described here according to the theory of electromagnetic scattering and the geometrical theory of diffraction. A high resolution estimation algorithm to extract the model parameters is also developed by building the relation of the scattering model and Prony model. The analysis of Cramer-Rao bound and simulation show that the method here has better statistical performance. The simulated analysis also indicates that the accurate extraction of the diffraction coefficient of scattering center is restricted by signal to noise ratio, radar center frequency and radar bandwidth.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by National Natural Science Foundation for Young Scientists of China
文摘The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR.