To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundament...To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.展开更多
This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relev...This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relevant process parameters and initial conditions) have a significant influence on the evolution of the system.The main idea of the methodology is:(i) making the system model "express itself" through simulation by having the model driven by an elaborated simulation engine;(ii) exploiting uniform design to pick out a small subset of representative design points from the space of relevant dynamic characteristics;(iii) for each selected design point,employing a depth-first systematic exploration strategy to cover all possible scenario branches at each branch point.A highly dynamic example adapted from the literature(a chemical batch reactor) is studied to test the effectiveness of the proposed methodology.展开更多
A framework was proposed for designing a system of systems(SoS) that takes account of the system' s evolution over time.Given the design space of the SoS analysis,construct a multiepoch scenario design,SoS optimiz...A framework was proposed for designing a system of systems(SoS) that takes account of the system' s evolution over time.Given the design space of the SoS analysis,construct a multiepoch scenario design,SoS optimization,and robust designs.A hybrid model based on multi-agent and system dynamic models was used to analyze the evolution of an SoS and find robust designs.The framework can help decision makers generate a robust SoS structure based on the SoS' s capabilities over multiple epochs.展开更多
基金National Natural Science Foundation of China No.U19A2083.
文摘To realize the widespread application and continuous functional development of intelligent vehicles,test and evaluation of vehicle's functionality and Safety Performance in complex off-road scenarios are fundamental.Since traditional distance-based road tests cannot meet the evolving test requirements,a method to design the function-based off-road testing scenario library for intelligent vehicles(IV)is proposed in this paper.The testing scenario library is defined as a critical set of scenarios that can be used for IV tests.First,for the complex and diverse off-road scenarios,a hierarchical,structural model of the test scenario is built.Then,the critical test scenarios are selected adaptively according to the vehicle model to be tested.Next,those parameters representing the challenging test scenarios are selected.The selected parameters need to fit the natural distribution probability of scenarios.The critical test-scenario library is built combing these parameters with the structural model.Finally,the test scenarios that are most approximate to the natural driving scenario are determined with importance sampling theory.The test-scenario library built with this method can provide more critical test scenarios,and is widely applicable despite different vehicle models.Verified by simulation in the off-road interaction scenarios,test would be accelerated significantly with this method,about 800 times faster than testing in the natural road environment.
基金supported by the National Natural Science Foundation of China (70901004)the Fundamental Research Funds for the Central Universities (YWF-10-01-A12)
文摘This paper presents a methodology for automatically generating risk scenarios for dynamic reliability applications in which some dynamic characteristics(e.g.,the order,timing and magnitude of events,the value of relevant process parameters and initial conditions) have a significant influence on the evolution of the system.The main idea of the methodology is:(i) making the system model "express itself" through simulation by having the model driven by an elaborated simulation engine;(ii) exploiting uniform design to pick out a small subset of representative design points from the space of relevant dynamic characteristics;(iii) for each selected design point,employing a depth-first systematic exploration strategy to cover all possible scenario branches at each branch point.A highly dynamic example adapted from the literature(a chemical batch reactor) is studied to test the effectiveness of the proposed methodology.
基金National Natural Science Foundations of China(Nos.71331008,71501182)National Social Science Foundation of China(No.15GJ003-278)
文摘A framework was proposed for designing a system of systems(SoS) that takes account of the system' s evolution over time.Given the design space of the SoS analysis,construct a multiepoch scenario design,SoS optimization,and robust designs.A hybrid model based on multi-agent and system dynamic models was used to analyze the evolution of an SoS and find robust designs.The framework can help decision makers generate a robust SoS structure based on the SoS' s capabilities over multiple epochs.