高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间...高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
文摘高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。