Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro...Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.展开更多
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
以L-酪氨酸甲酯盐酸盐为原料,通过格氏反应合成了一种手性β-氨基醇;以水杨醛为原料,通过溴代反应合成了3,5-二溴水杨醛和5-溴水杨醛;将手性β-氨基醇和溴代水杨醛在乙醇中缩合,制备了两种手性三齿Schiff-base配体.产物的结构经IR,1 H N...以L-酪氨酸甲酯盐酸盐为原料,通过格氏反应合成了一种手性β-氨基醇;以水杨醛为原料,通过溴代反应合成了3,5-二溴水杨醛和5-溴水杨醛;将手性β-氨基醇和溴代水杨醛在乙醇中缩合,制备了两种手性三齿Schiff-base配体.产物的结构经IR,1 H NMR,13C NMR和MS表征确定.将配体应用于催化不对称Henry反应中,考察其在不同反应条件下的催化性能,在最优化的反应条件下,不同底物均获得了较好的催化效果,产率最高达95%,ee值最高达90%.展开更多
Five novel ternary complexes of the rare earth ions with o-phenanthroline(Phen) and Schiff base salicylaldehyde L-phenyla- lanine(KHL) were synthesized in ethanol. Their compositions were characterized by elementa...Five novel ternary complexes of the rare earth ions with o-phenanthroline(Phen) and Schiff base salicylaldehyde L-phenyla- lanine(KHL) were synthesized in ethanol. Their compositions were characterized by elemental analysis, molar conductance, ^1H NMR, FT-IR, and Raman spectra. The formulas of the complexes were verified to be RE(L)(Phen)Cl(H2O) (RE=La^3+, Ce^3+, Nd^3+, Er^3+, and Gd^3+; L=Schiff base salicylaldehyde L-phenylalanine; phen=o-phenanthroline). Methyl thiazolyl tetrazolium (MTT) colorimetry and flow cytometry were used to test the anticancer effect of the complexes with K562 tumor cell. The research showed that the complexes could inhibit K562 tumor cell's growth, generation, and induce apoptosis. The inhibition ratio was accelerated by increasing the dosage, and it had significant positive correlation with the medication dosage.展开更多
基金supported in part by JSPS KAKENHI Grant Numbers in Japan(JP21H05229 to I.K.)JST CREST(JPMJCR21B2)The authors also thank Nobuko Yamaguchi for the financial support.
文摘Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
文摘以L-酪氨酸甲酯盐酸盐为原料,通过格氏反应合成了一种手性β-氨基醇;以水杨醛为原料,通过溴代反应合成了3,5-二溴水杨醛和5-溴水杨醛;将手性β-氨基醇和溴代水杨醛在乙醇中缩合,制备了两种手性三齿Schiff-base配体.产物的结构经IR,1 H NMR,13C NMR和MS表征确定.将配体应用于催化不对称Henry反应中,考察其在不同反应条件下的催化性能,在最优化的反应条件下,不同底物均获得了较好的催化效果,产率最高达95%,ee值最高达90%.
基金the National Natural Science Foundation of China (20671063)Shanghai Leading Academic Discipline Project (T0402)
文摘Five novel ternary complexes of the rare earth ions with o-phenanthroline(Phen) and Schiff base salicylaldehyde L-phenyla- lanine(KHL) were synthesized in ethanol. Their compositions were characterized by elemental analysis, molar conductance, ^1H NMR, FT-IR, and Raman spectra. The formulas of the complexes were verified to be RE(L)(Phen)Cl(H2O) (RE=La^3+, Ce^3+, Nd^3+, Er^3+, and Gd^3+; L=Schiff base salicylaldehyde L-phenylalanine; phen=o-phenanthroline). Methyl thiazolyl tetrazolium (MTT) colorimetry and flow cytometry were used to test the anticancer effect of the complexes with K562 tumor cell. The research showed that the complexes could inhibit K562 tumor cell's growth, generation, and induce apoptosis. The inhibition ratio was accelerated by increasing the dosage, and it had significant positive correlation with the medication dosage.