Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hy...Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.展开更多
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro...Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.展开更多
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
The compounds have been synthesized and characterized by routine MS, IR and NMR spectrometry methods. The compounds are all active on bacterial strains with the exception of Salmonella typhimirium, with a MIC value of...The compounds have been synthesized and characterized by routine MS, IR and NMR spectrometry methods. The compounds are all active on bacterial strains with the exception of Salmonella typhimirium, with a MIC value of 7.5 mg/mL. They show a percentage of anti-radical activity of 75.476 ± 5.070 for the compound DAN-S and of 68.142 ± 6.539 for the compound DAN-OV. The compounds are sensitive to the two champions used. DAN-S compound is then the most active.展开更多
In this study, we exhibited an amino acid (arginine and threonine) derivative Schiff base copper(II) complexes incorporating an azobenzene moiety as a photoresponsive site and conjugated it to egg white lysozyme, a we...In this study, we exhibited an amino acid (arginine and threonine) derivative Schiff base copper(II) complexes incorporating an azobenzene moiety as a photoresponsive site and conjugated it to egg white lysozyme, a well-known protein, to change ligand conformation under binding to lysozyme. Among several spectroscopic investigations, ESR clearly showed that the nitrogen atom of the amino acid residue of lysozyme was bound to the paramagnetic copper(II) ion of the complex, and UV light irradiation confirmed photoisomerization of the azobenzene moiety of the ligand to cis-form. The binding mode was considered by means of spectroscopic as well as computational methods, whereas complete crystallographic verification was still a preliminary stage.展开更多
Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investi...Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.展开更多
To investigate the structural form of gossypol and gossypolone Schiff's bases, seven relevant Schiff's bases were synthesized and the electrospray ionization-tandem mass spectrometry (ESI-MS/MS) with low-energy co...To investigate the structural form of gossypol and gossypolone Schiff's bases, seven relevant Schiff's bases were synthesized and the electrospray ionization-tandem mass spectrometry (ESI-MS/MS) with low-energy collision-induced dissociation was used to analyze their fragmentations. A common fragmentation pathway with the loss of RNH2 from those schiff's bases quasi-molecular ions was observed and proposed on the basis of their MS/MS spectra data. This common pathway indicated that those Schiff's bases existed mainly as the enamine form not the imine form previously showed in most reports.展开更多
Three kinds of fluorinated Schiff's base esters, 4-allyloxy-2-X-6-X-benzoic acid 4-[(2, 3, 4-trifluorophenylimino)methyl]phenyl ester, where X=H or F, were synthesized and characterized. Their chemical structures w...Three kinds of fluorinated Schiff's base esters, 4-allyloxy-2-X-6-X-benzoic acid 4-[(2, 3, 4-trifluorophenylimino)methyl]phenyl ester, where X=H or F, were synthesized and characterized. Their chemical structures were identified by Fourier transform infrared spectroscopy (FTIR) and ^1H nuclear magnetic resonance (^1H NMR). Their mesomorphic properties were studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). It was found that all the three compounds exhibited enantiotropic nematic phases only. And their cleating point temperature and thermal range of mesophase decreased with the number of fluorine atoms on the rigid core of the compounds; while their melting point temperature showed no distinct regularity.展开更多
文摘Two new dinuclear lanthanidecomplexes,namely[Ln_(2)(dbm)_(2)(HL)_(2)(CH_(3)OH)_(2)]·4CH_(3)OH[Ln=Tb(1)and Dy(2),Hdbm=dibenzoylmethane]have been synthesized using prepared multidentate Schiff base ligand H_(3)L(hydroxy‑acetic acid(4‑diethylamino‑2‑hydroxy‑benzylidene)‑hydrazide)with good biological activity.Structure characterizations show that the complex comprises two Ln3+ions,two dbm-ions,two HL^(2-)ligands,two CH_(3)OH molecules,and four free methanol molecules.Each Ln^(3+)ion is eight‑coordinated.The two central Lnions are bridged by twoμ_(2)‑O atoms leading to a parallelogram[Ln2O2]core.The interaction between the compounds(H_(3)L,1,and 2)and the calf thymus DNA(CT‑DNA)has been further confirmed by UV‑Vis spectrometry,fluorescence titration,and cyclic voltammetry.The results showed that both 1 and 2 could undergo insertion with CT‑DNA.CCDC:2343005,1;2343006,2.
基金supported in part by JSPS KAKENHI Grant Numbers in Japan(JP21H05229 to I.K.)JST CREST(JPMJCR21B2)The authors also thank Nobuko Yamaguchi for the financial support.
文摘Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
文摘The compounds have been synthesized and characterized by routine MS, IR and NMR spectrometry methods. The compounds are all active on bacterial strains with the exception of Salmonella typhimirium, with a MIC value of 7.5 mg/mL. They show a percentage of anti-radical activity of 75.476 ± 5.070 for the compound DAN-S and of 68.142 ± 6.539 for the compound DAN-OV. The compounds are sensitive to the two champions used. DAN-S compound is then the most active.
文摘In this study, we exhibited an amino acid (arginine and threonine) derivative Schiff base copper(II) complexes incorporating an azobenzene moiety as a photoresponsive site and conjugated it to egg white lysozyme, a well-known protein, to change ligand conformation under binding to lysozyme. Among several spectroscopic investigations, ESR clearly showed that the nitrogen atom of the amino acid residue of lysozyme was bound to the paramagnetic copper(II) ion of the complex, and UV light irradiation confirmed photoisomerization of the azobenzene moiety of the ligand to cis-form. The binding mode was considered by means of spectroscopic as well as computational methods, whereas complete crystallographic verification was still a preliminary stage.
文摘Co(II) and Cr(III) metal complexes of Schiff bases were synthesized from the condensation reaction between 4-(dimethylamino)benzaldehyde and 4-amino-3-hydroxy-naphthalene-1-sulfonic acid. Their structures were investigated by elemental analysis, molar conductance measurements, infrared spectroscopy, electronic spectroscopy, and 1HNMR spectroscopy. The elemental analysis data suggested a 1:1 [M:L] ratio for the complexes. The molar conductance measurements of the complexes indicate their electrolytic nature in DMSO as a solvent. The absorption bands in the electronic spectra verified an octahedral environment around the metal ions in the complexes.
文摘To investigate the structural form of gossypol and gossypolone Schiff's bases, seven relevant Schiff's bases were synthesized and the electrospray ionization-tandem mass spectrometry (ESI-MS/MS) with low-energy collision-induced dissociation was used to analyze their fragmentations. A common fragmentation pathway with the loss of RNH2 from those schiff's bases quasi-molecular ions was observed and proposed on the basis of their MS/MS spectra data. This common pathway indicated that those Schiff's bases existed mainly as the enamine form not the imine form previously showed in most reports.
基金the National High-Tech Research and Development Program of China (863 Program, No. 2003AA327050) the Major Project of Ministry of Education of the People’s Republic of China (No.104187).
文摘Three kinds of fluorinated Schiff's base esters, 4-allyloxy-2-X-6-X-benzoic acid 4-[(2, 3, 4-trifluorophenylimino)methyl]phenyl ester, where X=H or F, were synthesized and characterized. Their chemical structures were identified by Fourier transform infrared spectroscopy (FTIR) and ^1H nuclear magnetic resonance (^1H NMR). Their mesomorphic properties were studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). It was found that all the three compounds exhibited enantiotropic nematic phases only. And their cleating point temperature and thermal range of mesophase decreased with the number of fluorine atoms on the rigid core of the compounds; while their melting point temperature showed no distinct regularity.