Objective: To observe the discrepancies of responses induced by Schistosoma japonicum (S. japonicum) normal cercaria antigen (NCA) and ultraviolet (UV) -radiation-attenuated cercaria antigen (UVACA) in an in ...Objective: To observe the discrepancies of responses induced by Schistosoma japonicum (S. japonicum) normal cercaria antigen (NCA) and ultraviolet (UV) -radiation-attenuated cercaria antigen (UVACA) in an in vitro system. Methods: S. japonicum cercariae were collected and UVACA and NCA were prepared. Mouse macro- phage model cells (RAW 264.7) were treated with medium, NCA (40 μg/mL) or UVACA (40 μg/mL) in the presence or absence of recombinant mouse interferon gamma (rmIFN-γ; 4 ng/mL) for 48 h. Cell surface staining and flow cytometry were used to assess the major histocompatibility complex (MHC) Ⅱ expression, and data were expressed as mean fluorescence intensities (MFI). Interleukin (IL) -10, IL-6 and prostaglandin E2 (PGE2) in cell culture supernatant were evaluated by commercial enzyme-linked immunosorbent assays. Results: NCA significantly suppressed IFN-7-induced MHC Ⅱ expression on RAW 264.7 cells. In the presence of 1FN-7, NCA significantly promoted IL-6, IL-10 and PGE2 secretion from RAW 264.7 cells. In the presence of IFN-γ, UVACA significantly promoted IL-10 but not IL-6 and PGE2 secretion from RAW 264.7 cells and showed no effect on IFN-γ-induced MHC Ⅱ expression. Compared with UVACA, NCA significantly suppressed IFN-γ-induced MHC Ⅱ expression and significantly promoted IL-6, PGE2 and IL-10 secretion from RAW 264.7 cells. Conclusion: RAW 264.7 cells respond differently to NCA and UVACA. NCA can significantly suppress IFN-γ-induced MHC Ⅱ expression and significantly promote IL-6, IL-10 and PGE2 secretion from RAW 264.7 cells compared with UVACA.展开更多
Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technolog...Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technology was performed to investigate the gene transcription profile in skin draining lymph nodes (sdLNs) at 1 w after exposure to attenuated cercariae (AC) or normal cercariae (NC) of S. japonicum in C57BL/6 mice. The expressions of some representative genes were further confirmed by real-time PCR. Subsequently, the expressions of Th1/Th2 cytokine genes, cytotoxicity-related genes, as well as co-stimulator genes in spleens from AC-vaccinated and NC- infected mice were analyzed by real-time PCR at w 3 and 6 post-exposure. Results: The gene expressions of Th1 cytokines, including interferon-y (IFN-γ), interleukin (IL)-12 and tumor necrosis factor-α (TNF-α) in the sdLNs were significantly lower in AC-vaccinated mice than in NC-infected mice. Furthermore, the gene expressions of Th1- and Th2- cytokines, including IFN-γ, IL-12, TNF-α, IL-4 and IL-10, in the spleens from AC-vaccinated mice showed little changes at w 3 and 6 post-vaccination. In addition, cytotoxicity-related molecules including granzyme A, granzyme B, granzyme K, perforin 1 and Fas L were up-regulated from the early stage of vaccination, and peaked at the 3rd w after vaccination with UV-AC. Conclusion: UV-AC of S. japonicum could not ef- fectively induce a Thl response in C57BL/6 mice, which may be an explanation for the low protection against parasite challenge, and the role played by up-regulated expression of cytotoxicity-related genes in mice needs to be further investigated.展开更多
基金supported by a grant from National Nature Science Found(No.30430600)
文摘Objective: To observe the discrepancies of responses induced by Schistosoma japonicum (S. japonicum) normal cercaria antigen (NCA) and ultraviolet (UV) -radiation-attenuated cercaria antigen (UVACA) in an in vitro system. Methods: S. japonicum cercariae were collected and UVACA and NCA were prepared. Mouse macro- phage model cells (RAW 264.7) were treated with medium, NCA (40 μg/mL) or UVACA (40 μg/mL) in the presence or absence of recombinant mouse interferon gamma (rmIFN-γ; 4 ng/mL) for 48 h. Cell surface staining and flow cytometry were used to assess the major histocompatibility complex (MHC) Ⅱ expression, and data were expressed as mean fluorescence intensities (MFI). Interleukin (IL) -10, IL-6 and prostaglandin E2 (PGE2) in cell culture supernatant were evaluated by commercial enzyme-linked immunosorbent assays. Results: NCA significantly suppressed IFN-7-induced MHC Ⅱ expression on RAW 264.7 cells. In the presence of 1FN-7, NCA significantly promoted IL-6, IL-10 and PGE2 secretion from RAW 264.7 cells. In the presence of IFN-γ, UVACA significantly promoted IL-10 but not IL-6 and PGE2 secretion from RAW 264.7 cells and showed no effect on IFN-γ-induced MHC Ⅱ expression. Compared with UVACA, NCA significantly suppressed IFN-γ-induced MHC Ⅱ expression and significantly promoted IL-6, PGE2 and IL-10 secretion from RAW 264.7 cells. Conclusion: RAW 264.7 cells respond differently to NCA and UVACA. NCA can significantly suppress IFN-γ-induced MHC Ⅱ expression and significantly promote IL-6, IL-10 and PGE2 secretion from RAW 264.7 cells compared with UVACA.
基金supported by the National Basic Research Program of China(973 Program,No.2007CB513106)the National Science Foundation of China(NSFC,No.30430600)
文摘Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technology was performed to investigate the gene transcription profile in skin draining lymph nodes (sdLNs) at 1 w after exposure to attenuated cercariae (AC) or normal cercariae (NC) of S. japonicum in C57BL/6 mice. The expressions of some representative genes were further confirmed by real-time PCR. Subsequently, the expressions of Th1/Th2 cytokine genes, cytotoxicity-related genes, as well as co-stimulator genes in spleens from AC-vaccinated and NC- infected mice were analyzed by real-time PCR at w 3 and 6 post-exposure. Results: The gene expressions of Th1 cytokines, including interferon-y (IFN-γ), interleukin (IL)-12 and tumor necrosis factor-α (TNF-α) in the sdLNs were significantly lower in AC-vaccinated mice than in NC-infected mice. Furthermore, the gene expressions of Th1- and Th2- cytokines, including IFN-γ, IL-12, TNF-α, IL-4 and IL-10, in the spleens from AC-vaccinated mice showed little changes at w 3 and 6 post-vaccination. In addition, cytotoxicity-related molecules including granzyme A, granzyme B, granzyme K, perforin 1 and Fas L were up-regulated from the early stage of vaccination, and peaked at the 3rd w after vaccination with UV-AC. Conclusion: UV-AC of S. japonicum could not ef- fectively induce a Thl response in C57BL/6 mice, which may be an explanation for the low protection against parasite challenge, and the role played by up-regulated expression of cytotoxicity-related genes in mice needs to be further investigated.