BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived...BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived neurotrophic factor(BDNF)and sex hormones have complex interacting actions that contribute to the etiology of SCZ.AIM To investigate the influence of BDNF and sex hormones on cognition and clinical symptomatology in chronic antipsychotic-treated male SCZ patients.METHODS The serum levels of follicle-stimulating hormone,luteinizing hormone(LH),estradiol(E2),progesterone,testosterone(T),prolactin(PRL)and BDNF were compared between chronic antipsychotic-treated male(CATM)patients with SCZ(n=120)and healthy controls(n=120).The Positive and Negative Syndrome Scale was used to quantify SCZ symptoms,while neuropsychological tests were used to assess cognition.Neuropsychological tests,such as the Digit Cancellation Test(DCT),Semantic Verbal Fluency(SVF),Spatial Span Test(SS),Paced Auditory Serial Addition Test(PASAT),Trail Making Task(TMT-A),and Block Design Test(BDT),were used to assess executive functions(BDT),attention(DCT,TMT-A),memory(SS,PASAT),and verbal proficiency(SVF).RESULTS Although E2 levels were significantly lower in the patient group compared to the healthy controls,T,PRL,and LH levels were all significantly higher.Additionally,the analysis revealed that across the entire sample,there were positive correlations between E2 Levels and BDNF levels as well as BDNF levels and the digital cancellation time.In CATM patients with SCZ,a significant correlation between the negative symptoms score and PRL levels was observed.CONCLUSION Sex hormones and BDNF levels may also be linked to cognitive function in patients with chronic SCZ.展开更多
Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of isc...Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, Wes: China Hospital, Sichuan University, China between September 2011 and December 2014. The patients' severities of neurological defici:s in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR]= 0.67;95% confidence interval [CI]: 0.45-1.00;P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65;95% CI: 0.42-1.00;P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.5& 95% CI: 0.37-0.90;P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008,4]) on July 25, 2008.展开更多
BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: "target" and "transport". Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory ...BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: "target" and "transport". Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory epilepsy. Multidrug resistance 1 (MDR1) gene encodes for P-glycoprotein, the primary ATP-binding cassette transporter in the human body. Some single nucleotide polymorphisms of the MDR1 gene have been associated with refractory epilepsy. OBJECTIVE: To investigate the association between BDNF gene C270T polymorphism and MDR1 T-129C polymorphism with refractory epilepsy in Chinese Han children through the use of polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. DESIGN, TIME AND SETTING: A case-control, genetic association study was performed at the Central Laboratory, Third Xiangya Hospital of Central South University from June 2005 to November 2007. PARTICIPANTS: A total of 84 cases of unrelated children with epilepsy, including 41 cases of refractory epilepsy and 43 cases of drug-responsive epilepsy, were enrolled. An additional 30 healthy, Chinese Han children, whose ages and gender matched the refractory epilepsy patients, were selected as normal controls. METHODS: Venous blood was collected and genomic DNA was extracted from the blood specimens. C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene were genotyped using PCR-restriction fragment length polymorphism analysis. Association analysis using the Ftest and Chi-square test was statistically performed between C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene and refractory epilepsy. MAIN OUTCOME MEASURES: The distribution of genotypes and allele frequencies of C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene. RESULTS: The distribution of CC, CT, and TT genotypes, as well as C and T allele frequencies, in the BDNF gene was not significantly different between the refractory epilepsy group, drug-responsive epilepsy group, or the normal control group (P 〉 0.05). The distribution of TT genotype and T allele frequencies of the MDR1 gene was significantly different in the refractory epilepsy group compared with the drug-responsive epilepsy and normal control groups (P 〈 0.05). Comparison of haplotype combinations demonstrated that there were no significant differences in combinations of TT+CC, -FI-+CT, TC+CC, and TC+CT among the three groups (P 〉 0.05). CONCLUSION: C270T polymorphism of the BDNF gene was not associated with refractory epilepsy in Chinese Han children, but T-129C polymorphism in the MDR1 gene was associated with refractory epilepsy in Chinese Han children. The TT genotype and T allele frequencies could serve as susceptibility loci for refractory epilepsy. Interactions between C270T in BDNF gene and T-129C in MDR1 gene were not observed in refractory epilepsy in Chinese Han children.展开更多
Brain-derived neurotrophic factor(BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant...Brain-derived neurotrophic factor(BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.展开更多
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits neuronal survival and differentiation, synaptic transmission, and the modulation of synaptic plasticity. The biological actions of BDNF are media...Brain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits neuronal survival and differentiation, synaptic transmission, and the modulation of synaptic plasticity. The biological actions of BDNF are mediated via two distinct receptors: the high-affinity tropomyosin-related kinase B (TrkB) receptor and the low-affinity p75 neurotrophin receptor (p75NTR). Recent findings regarding the actions and mechanisms of BDNF are reviewed here. Activity-dependent synaptic plasticity, as exemplified by long-term potentiation (LTP) and long-term depression (LTD), underlies the cellular mechanism of learning and memory. An accumulating body of evidence shows that BDNF modulates synaptic plasticity. This function requires extracellular neurotrophin release, synaptic activity-dependent local protein synthesis. In addition, a precursor of BDNF, proBDNF, is emerging as a new ligand with biological activities that are distinct from those of BDNF. The proteolytic cleavage of proBDNF is also proposed as a mechanism that determines the direction of BDNF actions. This review discusses the post-translational processing of proBDNF, the modulatory roles of the human BDNF polymorphism Val66Met, recent reports of the novel mechanisms of BDNF expression, and clinical reports showing the roles of BDNF in the blood. Taken together, these data provide new insights into the biological roles of BDNF and its related molecules in the central nervous system.展开更多
Background:Risperidone and paliperidone have been the mainstay treatment for schizophrenia and their potential role in neuroprotection could be associated with brain-derived neurotrophic factor (BDNF) and N400 (an...Background:Risperidone and paliperidone have been the mainstay treatment for schizophrenia and their potential role in neuroprotection could be associated with brain-derived neurotrophic factor (BDNF) and N400 (an event-related brain potential component).So far,different effects on both BDNF and N400 were reported in relation to various antipsychotic treatments.However,few studies have been conducted on the mechanism ofrisperidone and paliperidone on BDNF and N400.This study aimed to compare the effects ofrisperidone and paliperidone on BDNF and the N400 component of the event-related brain potential in patients with first-episode schizophrenia.Methods:Ninety-eight patients with first-episode schizophrenia were randomly divided into the risperidone and paliperidone groups and treated with risperidone and paliperidone,respectively,for 12 weeks.Serum BDNF level,the latency,and amplitude of the N400 event-related potential before and after the treatment and Positive and Negative Syndrome Scale (PANSS) scores were compared between the two groups.Results:A total of 94 patients were included in the final analysis (47 patients in each group).After the treatment,the serum BDNF levels in both groups increased (all P 〈 0.01),while no significant difference in serum BDNF level was found between the groups before and after the treatment (all P 〉 0.05).After the treatment,N400 amplitudes were increased (from 4.73 ± 2.86 μv and 4.51 ± 4.63 μv to 5.35 ± 4.18 μv and 5.52 ± 3.08 μv,respectively) under congruent condition in both risperidone and paliperidone groups (all P 〈 0.01).Under incongruent conditions,the N400 latencies were shortened in the paliperidone group (from 424.13 ± 110.42 ms to 4.7.41 ± 154.59 ms,P 〈 0.05),and the N400 amplitudes were increased in the risperidone group (from 5.80 ± 3.50 μv to 7.17 ± 5.51 μv,P 〈 0.01).After treatment,the total PANSS score in both groups decreased significantly (all P 〈 0.01),but the difference between the groups was not significant (P 〉 0.05).A negative correlation between the reduction rate of the PANSS score and the increase in serum BDNF level after the treatment was found in the paliperidone group but not in the risperidone group.Conclusions:Both risperidone and paliperidone could increase the serum BDNF levels in patients with first-episode schizophrenia and improve their cognitive function (N400 latency and amplitude),but their antipsychotic mechanisms might differ.展开更多
Alexithymia refers to a cluster of emotion-related deficits such as difficulty attending to and identifying one’s feelings. Although not a diagnosable psychiatric condition, alexithymia is considered a personality ri...Alexithymia refers to a cluster of emotion-related deficits such as difficulty attending to and identifying one’s feelings. Although not a diagnosable psychiatric condition, alexithymia is considered a personality risk factor for multiple pathologies, including somatoform, substance use, eating, and mood disorders. Evidence suggests heritability, but few studies have examined the influence of specific genes on alexithymic traits. Candidate genes explored thus far include those involved in modulation of brain-derived neurotrophic factor (BDNF) and dopamine, two neurotransmitters whose functions have been implicated in human emotion processing. This study investigated the relationship between the C270T polymorphism of the BDNF gene, facets of alexithymia, and possible interactions with the COMT, DAT1, and ANKK1 genes in a sample of 130 healthy adults. Given the multidimensionality of the alexithymia construct and its overlap with the related constructs of emotional intelligence and mood awareness, we used principal components analysis to derive Clarity of Emotion and Attention to Emotion as specific facets of alexithymia. Results showed that the C270T C/C genotype group had lower Clarity of Emotion scores relative to the C/T genotype group, even after covarying for COMT, DAT1, and ANKK1 genotypes. Dopamine-related genes had no association with alexithymia dimensions, nor did they interact with the C270T polymorphism to predict Clarity of Emotion. Although the molecular mechanisms by which this polymorphism influences BDNF are unknown, this study suggests a role for BDNF in modulating aspects of alexithymia. We discuss these results in the context of BDNF’s trophic effects in the nervous system.展开更多
This review discusses the roles of brain-derived neurotrophic factor(BDNF)and precursor BDNF(proBDNF)in schizophrenia(SCZ).SCZ is associated with neuronal dysfunction,altered synaptic plasticity,and cognitive deficits...This review discusses the roles of brain-derived neurotrophic factor(BDNF)and precursor BDNF(proBDNF)in schizophrenia(SCZ).SCZ is associated with neuronal dysfunction,altered synaptic plasticity,and cognitive deficits.BDNF positively promotes neuronal growth,differentiation,and synapse forma-tion,and regulates synaptic transmission and plasticity.ProBDNF negatively affects neuronal survival and synaptic remodeling,however,by binding to its neurotroph-in receptor p75(p75NTR).A better understanding of the pathogenesis of SCZ vis-à-vis BDNF and proBDNF may provide new directions and strategies for its treatment.展开更多
目的探讨GDNF基因多态性与精神分裂症临床特征的相关性。方法对符合纳入标准的精神分裂症病例组及健康对照组进行临床资料收集及血样的采集,采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测GDNF基因多态性。选取GDNF基因2个...目的探讨GDNF基因多态性与精神分裂症临床特征的相关性。方法对符合纳入标准的精神分裂症病例组及健康对照组进行临床资料收集及血样的采集,采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测GDNF基因多态性。选取GDNF基因2个SNP位点:rs2973050,rs2910702。所有数据应用SSPS13.0软件包处理。结果①哈迪温伯格平衡(Hardy-Weinberg s equilibrium)结果显示,GDNF基因rs2910702在病例组中偏离哈迪温伯格平衡(χ2=24.983,P=0.000);②GDNF等位基因频率在病例组与对照组中的分布无统计学差异(P>0.05),但基因型频率分布有统计学差异(P<0.05);③GDNF各基因型与精神分裂症的临床分型、PANSS量表各因子分无明显相关性。结论 rs2973050基因型C/C、rs2910702基因型G/G可能与精神分裂症的发生有关,为精神分裂症的危险基因型。展开更多
基金Supported by This study was supported by the Suzhou Municipal Sci-Tech Bureau Program,No.SS202070Scientific and Technological Program of Suzhou,No.SS202069+5 种基金Suzhou clinical Medical Center for mood disorders,No.Szlcyxzx202109Suzhou Clinical Key Disciplines for Geriatric Psychiatry,No.SZXK202116Suzhou Key Technologies Program,No.SKY2021063Jiangsu Province social development project,No.BE2020764Research Project of Jiangsu Commission of Health,No.M2020031Elderly Health Research Project of Jiangsu Commission of Health,No.LR2022015 and No.LKZ2023020.
文摘BACKGROUND There are systematic differences in clinical features between women and men with schizophrenia(SCZ).The regulation of sex hormones may play a potential role in abnormal neurodevelopment in SCZ.Brain-derived neurotrophic factor(BDNF)and sex hormones have complex interacting actions that contribute to the etiology of SCZ.AIM To investigate the influence of BDNF and sex hormones on cognition and clinical symptomatology in chronic antipsychotic-treated male SCZ patients.METHODS The serum levels of follicle-stimulating hormone,luteinizing hormone(LH),estradiol(E2),progesterone,testosterone(T),prolactin(PRL)and BDNF were compared between chronic antipsychotic-treated male(CATM)patients with SCZ(n=120)and healthy controls(n=120).The Positive and Negative Syndrome Scale was used to quantify SCZ symptoms,while neuropsychological tests were used to assess cognition.Neuropsychological tests,such as the Digit Cancellation Test(DCT),Semantic Verbal Fluency(SVF),Spatial Span Test(SS),Paced Auditory Serial Addition Test(PASAT),Trail Making Task(TMT-A),and Block Design Test(BDT),were used to assess executive functions(BDT),attention(DCT,TMT-A),memory(SS,PASAT),and verbal proficiency(SVF).RESULTS Although E2 levels were significantly lower in the patient group compared to the healthy controls,T,PRL,and LH levels were all significantly higher.Additionally,the analysis revealed that across the entire sample,there were positive correlations between E2 Levels and BDNF levels as well as BDNF levels and the digital cancellation time.In CATM patients with SCZ,a significant correlation between the negative symptoms score and PRL levels was observed.CONCLUSION Sex hormones and BDNF levels may also be linked to cognitive function in patients with chronic SCZ.
基金supported by the National Natural Science Foundation of China,No.81472162(to MKZ)
文摘Single-nucleotide polymorphisms in the brain-derived neurotrophic factor gene may affect the secretion and function of brain-derived neurotrophic factor, thereby affecting the occurrence, severity and prognosis of ischemic stroke. This case-control study included 778 patients (475 males and 303 females, mean age of 64.0 ± 12.6 years) in the acute phase of ischemic stroke and 865 control subjects (438 males and 427 females, mean age of 51.7 ± 14.7 years) from the Department of Neurology, Wes: China Hospital, Sichuan University, China between September 2011 and December 2014. The patients' severities of neurological defici:s in the acute phase were assessed using the National Institutes of Health Stroke Scale immediately after admission to hospital. The ischemic stroke patients were divided into different subtypes according to the Trial of Org 10172 in Acute Stroke Treatment classification. Early prognosis was evaluated using the Modified Rankin Scale when the patients were discharged. Genomic DNA was extracted from peripheral blood of participants. Genotyping of rs7124442 and rs6265 was performed using Kompetitive Allele Specific polymerase chain reaction genotyping technology. Our results demonstrated that patients who carried the C allele of the rs7124442 locus had a lower risk of poor prognosis than the T allele carriers (odds ratio [OR]= 0.67;95% confidence interval [CI]: 0.45-1.00;P = 0.048). The patients with the CC or TC genotype also exhibited lower risk than TT carriers (OR = 0.65;95% CI: 0.42-1.00;P = 0.049). The AA genotype at the rs6265 locus was associated with the occurrence of ischemic stroke in patients with large-artery atherosclerosis (OR = 0.5& 95% CI: 0.37-0.90;P = 0.015). We found that the C allele (CC and TC genotypes) at the rs7124442 locus may be protective for the prognosis of ischemic stroke. The AA genotype at the rs6265 locus is likely a protective factor against the occurrence of ischemic stroke in patients with large-artery atherosclerosis. The study protocol was approved by the Ethics Committee of West China Hospital of Sichuan University, China (approval ID number 2008,4]) on July 25, 2008.
基金the Doctoral Foundation of the Third Xiangya Hospital of Central South University,No. 2005-08
文摘BACKGROUND: There are two hypotheses for the underlying cause of refractory epilepsy: "target" and "transport". Studies have shown that brain-derived neurotrophic factor (BDNF) is over-expressed in refractory epilepsy. Multidrug resistance 1 (MDR1) gene encodes for P-glycoprotein, the primary ATP-binding cassette transporter in the human body. Some single nucleotide polymorphisms of the MDR1 gene have been associated with refractory epilepsy. OBJECTIVE: To investigate the association between BDNF gene C270T polymorphism and MDR1 T-129C polymorphism with refractory epilepsy in Chinese Han children through the use of polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis. DESIGN, TIME AND SETTING: A case-control, genetic association study was performed at the Central Laboratory, Third Xiangya Hospital of Central South University from June 2005 to November 2007. PARTICIPANTS: A total of 84 cases of unrelated children with epilepsy, including 41 cases of refractory epilepsy and 43 cases of drug-responsive epilepsy, were enrolled. An additional 30 healthy, Chinese Han children, whose ages and gender matched the refractory epilepsy patients, were selected as normal controls. METHODS: Venous blood was collected and genomic DNA was extracted from the blood specimens. C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene were genotyped using PCR-restriction fragment length polymorphism analysis. Association analysis using the Ftest and Chi-square test was statistically performed between C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene and refractory epilepsy. MAIN OUTCOME MEASURES: The distribution of genotypes and allele frequencies of C270T polymorphism in BDNF gene and T-129C polymorphism in MDR1 gene. RESULTS: The distribution of CC, CT, and TT genotypes, as well as C and T allele frequencies, in the BDNF gene was not significantly different between the refractory epilepsy group, drug-responsive epilepsy group, or the normal control group (P 〉 0.05). The distribution of TT genotype and T allele frequencies of the MDR1 gene was significantly different in the refractory epilepsy group compared with the drug-responsive epilepsy and normal control groups (P 〈 0.05). Comparison of haplotype combinations demonstrated that there were no significant differences in combinations of TT+CC, -FI-+CT, TC+CC, and TC+CT among the three groups (P 〉 0.05). CONCLUSION: C270T polymorphism of the BDNF gene was not associated with refractory epilepsy in Chinese Han children, but T-129C polymorphism in the MDR1 gene was associated with refractory epilepsy in Chinese Han children. The TT genotype and T allele frequencies could serve as susceptibility loci for refractory epilepsy. Interactions between C270T in BDNF gene and T-129C in MDR1 gene were not observed in refractory epilepsy in Chinese Han children.
基金Supported by The grants from the Instituto de Salud Carlos Ⅲ of FIS(PI 11/01958)the Intramural Grant from CIBER-SAM to Penadés R
文摘Brain-derived neurotrophic factor(BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.
文摘Brain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits neuronal survival and differentiation, synaptic transmission, and the modulation of synaptic plasticity. The biological actions of BDNF are mediated via two distinct receptors: the high-affinity tropomyosin-related kinase B (TrkB) receptor and the low-affinity p75 neurotrophin receptor (p75NTR). Recent findings regarding the actions and mechanisms of BDNF are reviewed here. Activity-dependent synaptic plasticity, as exemplified by long-term potentiation (LTP) and long-term depression (LTD), underlies the cellular mechanism of learning and memory. An accumulating body of evidence shows that BDNF modulates synaptic plasticity. This function requires extracellular neurotrophin release, synaptic activity-dependent local protein synthesis. In addition, a precursor of BDNF, proBDNF, is emerging as a new ligand with biological activities that are distinct from those of BDNF. The proteolytic cleavage of proBDNF is also proposed as a mechanism that determines the direction of BDNF actions. This review discusses the post-translational processing of proBDNF, the modulatory roles of the human BDNF polymorphism Val66Met, recent reports of the novel mechanisms of BDNF expression, and clinical reports showing the roles of BDNF in the blood. Taken together, these data provide new insights into the biological roles of BDNF and its related molecules in the central nervous system.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81471357) and Shanghai Natural Science Foundation (No. 13ZR1439300).
文摘Background:Risperidone and paliperidone have been the mainstay treatment for schizophrenia and their potential role in neuroprotection could be associated with brain-derived neurotrophic factor (BDNF) and N400 (an event-related brain potential component).So far,different effects on both BDNF and N400 were reported in relation to various antipsychotic treatments.However,few studies have been conducted on the mechanism ofrisperidone and paliperidone on BDNF and N400.This study aimed to compare the effects ofrisperidone and paliperidone on BDNF and the N400 component of the event-related brain potential in patients with first-episode schizophrenia.Methods:Ninety-eight patients with first-episode schizophrenia were randomly divided into the risperidone and paliperidone groups and treated with risperidone and paliperidone,respectively,for 12 weeks.Serum BDNF level,the latency,and amplitude of the N400 event-related potential before and after the treatment and Positive and Negative Syndrome Scale (PANSS) scores were compared between the two groups.Results:A total of 94 patients were included in the final analysis (47 patients in each group).After the treatment,the serum BDNF levels in both groups increased (all P 〈 0.01),while no significant difference in serum BDNF level was found between the groups before and after the treatment (all P 〉 0.05).After the treatment,N400 amplitudes were increased (from 4.73 ± 2.86 μv and 4.51 ± 4.63 μv to 5.35 ± 4.18 μv and 5.52 ± 3.08 μv,respectively) under congruent condition in both risperidone and paliperidone groups (all P 〈 0.01).Under incongruent conditions,the N400 latencies were shortened in the paliperidone group (from 424.13 ± 110.42 ms to 4.7.41 ± 154.59 ms,P 〈 0.05),and the N400 amplitudes were increased in the risperidone group (from 5.80 ± 3.50 μv to 7.17 ± 5.51 μv,P 〈 0.01).After treatment,the total PANSS score in both groups decreased significantly (all P 〈 0.01),but the difference between the groups was not significant (P 〉 0.05).A negative correlation between the reduction rate of the PANSS score and the increase in serum BDNF level after the treatment was found in the paliperidone group but not in the risperidone group.Conclusions:Both risperidone and paliperidone could increase the serum BDNF levels in patients with first-episode schizophrenia and improve their cognitive function (N400 latency and amplitude),but their antipsychotic mechanisms might differ.
文摘Alexithymia refers to a cluster of emotion-related deficits such as difficulty attending to and identifying one’s feelings. Although not a diagnosable psychiatric condition, alexithymia is considered a personality risk factor for multiple pathologies, including somatoform, substance use, eating, and mood disorders. Evidence suggests heritability, but few studies have examined the influence of specific genes on alexithymic traits. Candidate genes explored thus far include those involved in modulation of brain-derived neurotrophic factor (BDNF) and dopamine, two neurotransmitters whose functions have been implicated in human emotion processing. This study investigated the relationship between the C270T polymorphism of the BDNF gene, facets of alexithymia, and possible interactions with the COMT, DAT1, and ANKK1 genes in a sample of 130 healthy adults. Given the multidimensionality of the alexithymia construct and its overlap with the related constructs of emotional intelligence and mood awareness, we used principal components analysis to derive Clarity of Emotion and Attention to Emotion as specific facets of alexithymia. Results showed that the C270T C/C genotype group had lower Clarity of Emotion scores relative to the C/T genotype group, even after covarying for COMT, DAT1, and ANKK1 genotypes. Dopamine-related genes had no association with alexithymia dimensions, nor did they interact with the C270T polymorphism to predict Clarity of Emotion. Although the molecular mechanisms by which this polymorphism influences BDNF are unknown, this study suggests a role for BDNF in modulating aspects of alexithymia. We discuss these results in the context of BDNF’s trophic effects in the nervous system.
基金Kunming Health Science and Technology Talent Training Project[2023-SW(Reserve)-54].
文摘This review discusses the roles of brain-derived neurotrophic factor(BDNF)and precursor BDNF(proBDNF)in schizophrenia(SCZ).SCZ is associated with neuronal dysfunction,altered synaptic plasticity,and cognitive deficits.BDNF positively promotes neuronal growth,differentiation,and synapse forma-tion,and regulates synaptic transmission and plasticity.ProBDNF negatively affects neuronal survival and synaptic remodeling,however,by binding to its neurotroph-in receptor p75(p75NTR).A better understanding of the pathogenesis of SCZ vis-à-vis BDNF and proBDNF may provide new directions and strategies for its treatment.
文摘目的探讨GDNF基因多态性与精神分裂症临床特征的相关性。方法对符合纳入标准的精神分裂症病例组及健康对照组进行临床资料收集及血样的采集,采用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测GDNF基因多态性。选取GDNF基因2个SNP位点:rs2973050,rs2910702。所有数据应用SSPS13.0软件包处理。结果①哈迪温伯格平衡(Hardy-Weinberg s equilibrium)结果显示,GDNF基因rs2910702在病例组中偏离哈迪温伯格平衡(χ2=24.983,P=0.000);②GDNF等位基因频率在病例组与对照组中的分布无统计学差异(P>0.05),但基因型频率分布有统计学差异(P<0.05);③GDNF各基因型与精神分裂症的临床分型、PANSS量表各因子分无明显相关性。结论 rs2973050基因型C/C、rs2910702基因型G/G可能与精神分裂症的发生有关,为精神分裂症的危险基因型。