The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain ...The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen's for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.展开更多
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, ...Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.展开更多
文摘The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen's for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.
文摘Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.