In this paper, a bivariate generating function CF(x, y) =f(x)-yf(xy)1-yis investigated, where f(x)= n 0fnxnis a generating function satisfying the functional equation f(x) = 1 + r j=1 m i=j-1aij xif(x)j.In particular,...In this paper, a bivariate generating function CF(x, y) =f(x)-yf(xy)1-yis investigated, where f(x)= n 0fnxnis a generating function satisfying the functional equation f(x) = 1 + r j=1 m i=j-1aij xif(x)j.In particular, we study lattice paths in which their end points are on the line y = 1. Rooted lattice paths are defined. It is proved that the function CF(x, y) is a generating function defined on some rooted lattice paths with end point on y = 1. So, by a simple and unified method, from the view of lattice paths, we obtain two combinatorial interpretations of this bivariate function and derive two uniform partitions on these rooted lattice paths.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11071163)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110073120068)Education Department of Henan Province(Grant No.14A110026)
文摘In this paper, a bivariate generating function CF(x, y) =f(x)-yf(xy)1-yis investigated, where f(x)= n 0fnxnis a generating function satisfying the functional equation f(x) = 1 + r j=1 m i=j-1aij xif(x)j.In particular, we study lattice paths in which their end points are on the line y = 1. Rooted lattice paths are defined. It is proved that the function CF(x, y) is a generating function defined on some rooted lattice paths with end point on y = 1. So, by a simple and unified method, from the view of lattice paths, we obtain two combinatorial interpretations of this bivariate function and derive two uniform partitions on these rooted lattice paths.