We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(R...We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(RK4IP-CQE), and the other is the local error adaptive step-control method(RK4IP-LEM). The methods are developed in the vector form of fourthorder Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.展开更多
In this paper,with the relative Morse index,we will study the existence of solutions of(1.1)under the assumptions that V satisfies some weaker conditions than those in[2].
In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)...In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.展开更多
A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the full...A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.展开更多
In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical expo...In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location o...Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location of the clock in the field. This means that speed of light in vacuo in centripetal force field is not and cannot be a true physical constant but a function of location in such field because definition of c involves a unit of time and duration of that time unit varies with location in such field. However, classical Schrödinger equation assumes a prior the constancy of c in field, even though this may not be the case. Therefore, it is necessary to revise the classical equation in order to comply with the law of mass-energy equivalence of Einstein hence time dilation in centripetal force field.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,...This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.展开更多
This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the correspon...This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).展开更多
In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized...In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized into a non-canonical Hamiltonian system.Then,different kinds of coordinate transformations can be used to standardize the non-canonical Hamiltonian system.Therefore,the symplectic schemes and symmetric schemes can be employed to simulate the solitons motion and test the preservation of the invariants of the A–L model and the conserved quantities approximations of the original NLSE.The numerical experiments show that symplectic schemes and symmetric schemes have similar simulation effect,and own significant superiority over non-symplectic and non-symmetric schemes in long-term tracking the motion of solitons,preserving the invariants and the approximations of conserved quantities.Moreover,it is obvious that coordinate transformations with more symmetry have a better simulation effect.展开更多
In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This...In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.展开更多
We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle ...We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.展开更多
In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Sch...In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.展开更多
Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schr?dinger...Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schr?dinger equation with the finite element method. The error estimate and superconvergence property with order O(hk+1)in the H1norm are given by using the elliptic projection operator in the semi-discrete scheme. The global superconvergence is derived by the interpolation post-processing technique. The superconvergence result with order O(hk+1+ τ2) in the H1norm can be obtained in the Crank-Nicolson fully discrete scheme.展开更多
The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. T...The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2021YFC2201803 and 2020YFC2200104)。
文摘We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(RK4IP-CQE), and the other is the local error adaptive step-control method(RK4IP-LEM). The methods are developed in the vector form of fourthorder Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.
基金Supported by DEU of Henan(Grant No.19A110011)and PSF of China(Grant No.188576).
文摘In this paper,with the relative Morse index,we will study the existence of solutions of(1.1)under the assumptions that V satisfies some weaker conditions than those in[2].
基金supported by the National Natural Science Foundation of China(12171212)。
文摘In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.
基金supported by the National Natural Science Foundation of China under grants No.11971010,11771162,12231003.
文摘A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.
基金supported by the NNSF of China(12171014, 12271539, 12171326)the Beijing Municipal Commission of Education (KZ202010028048)the Research Foundation for Advanced Talents of Beijing Technology and Business University (19008022326)。
文摘In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location of the clock in the field. This means that speed of light in vacuo in centripetal force field is not and cannot be a true physical constant but a function of location in such field because definition of c involves a unit of time and duration of that time unit varies with location in such field. However, classical Schrödinger equation assumes a prior the constancy of c in field, even though this may not be the case. Therefore, it is necessary to revise the classical equation in order to comply with the law of mass-energy equivalence of Einstein hence time dilation in centripetal force field.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.
文摘This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).
基金This work was supported by the Fundamental Research Funds for the Central Universities(Nos.2018ZY14,2019ZY20 and 2015ZCQ-LY-01)Beijing Higher Education Young Elite Teacher Project(YETP0769)the National Natural Science Foundation of China(Grant Nos.61571002,61179034 and 61370193).
文摘In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized into a non-canonical Hamiltonian system.Then,different kinds of coordinate transformations can be used to standardize the non-canonical Hamiltonian system.Therefore,the symplectic schemes and symmetric schemes can be employed to simulate the solitons motion and test the preservation of the invariants of the A–L model and the conserved quantities approximations of the original NLSE.The numerical experiments show that symplectic schemes and symmetric schemes have similar simulation effect,and own significant superiority over non-symplectic and non-symmetric schemes in long-term tracking the motion of solitons,preserving the invariants and the approximations of conserved quantities.Moreover,it is obvious that coordinate transformations with more symmetry have a better simulation effect.
基金the National Natural Science Foundation of China underGrant No. 10401020.
文摘In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.
文摘We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.
文摘In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.
基金Project supported by the National Natural Science Foundation of China(No.11671157)
文摘Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schr?dinger equation with the finite element method. The error estimate and superconvergence property with order O(hk+1)in the H1norm are given by using the elliptic projection operator in the semi-discrete scheme. The global superconvergence is derived by the interpolation post-processing technique. The superconvergence result with order O(hk+1+ τ2) in the H1norm can be obtained in the Crank-Nicolson fully discrete scheme.
文摘The effective mass one-dimensional Schroedinger equation for the generalized Morse potential is solved by using Nikiforov-Uvarov method. Energy eigenvalues and corresponding eigenfunctions are computed analytically. The results are also reduced to the constant mass case. Energy eigenvalues are computed numerically for some diatomic molecules. They are in agreement with the ones obtained before.