The Schrodinger cat state produced differently in two directions is anticipated to be a critical quantum resource in quantum information technologies.By exploring the interplay between quantum nonreciprocity and topol...The Schrodinger cat state produced differently in two directions is anticipated to be a critical quantum resource in quantum information technologies.By exploring the interplay between quantum nonreciprocity and topology in a one-dimensional microcavity array,we obtain the Schrodinger cat state(a pure quantum state)in a chosen direction at the edge cavity,whereas a classical state in the other direction.This nonreciprocal generation of the cat state originates from the topologically protected chiralitymode excitation in the nontrivial phase,but in the trivial phase,the nonreciprocal generation of cat state vanishes.Thus,our proposal is switchable by tuning the parameters so that a topological phase transition occurs.Moreover,the obtained cat state has nonreciprocal high fidelity,nonclassicality,and quantum coherence,which are sufficient to be used in various one-way quantum technologies,e.g.,invisible quantum sensing,noise-tolerant quantum computing,and chiral quantum networks.Our work provides a general approach to control quantum nonreciprocities with the topological effect,which substantially broadens the fields of nonreciprocal photonics and topological physics.展开更多
In this exposition paper we present the optimal transport problem of Monge-Ampère-Kantorovitch(MAK in short)and its approximative entropical regularization.Contrary to the MAK optimal transport problem,the soluti...In this exposition paper we present the optimal transport problem of Monge-Ampère-Kantorovitch(MAK in short)and its approximative entropical regularization.Contrary to the MAK optimal transport problem,the solution of the entropical optimal transport problem is always unique,and is characterized by the Schrödinger system.The relationship between the Schrödinger system,the associated Bernstein process and the optimal transport was developed by Léonard[32,33](and by Mikami[39]earlier via an h-process).We present Sinkhorn’s algorithm for solving the Schrödinger system and the recent results on its convergence rate.We study the gradient descent algorithm based on the dual optimal question and prove its exponential convergence,whose rate might be independent of the regularization constant.This exposition is motivated by recent applications of optimal transport to different domains such as machine learning,image processing,econometrics,astrophysics etc..展开更多
The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate q...The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate quantum state is examined. In fact the method was applied in numerous cases—also by Schrödinger himself—without any use of the notion of time. Simultaneously, because of the development of computers, their use in solving the perturbation problems gradually decreased. However, the point of importance in the paper became the time. We demonstrate that collisions of a quantum system with the perturbation potential can be arranged along a circular scale of time whose properties provide us precisely with the energy terms obtained by the Schrödinger perturbation theory. This validity of results is checked till the perturbation order N = 7.展开更多
In this paper, the Schr?dinger equation is solved by Modified separation of variables (MSV) method suggested by Pishkoo and Darus. Using this method, Meijer’s G-function solutions are derived in cylindrical coordinat...In this paper, the Schr?dinger equation is solved by Modified separation of variables (MSV) method suggested by Pishkoo and Darus. Using this method, Meijer’s G-function solutions are derived in cylindrical coordinate system for quantum particle in cylindrical can. All elementary functions and most of the special functions which are the solution of extensive problems in physics and engineering are special cases of Meijer’s G-functions.展开更多
Schrödinger cat states,consisting of superpositions of macroscopically distinct states,provide key resources for a large number of emerging quantum technologies in quantum information processing.Here we propose h...Schrödinger cat states,consisting of superpositions of macroscopically distinct states,provide key resources for a large number of emerging quantum technologies in quantum information processing.Here we propose how to generate and manipulate mechanical and optical Schrödinger cat states with distinguishable superposition components by exploiting the unique properties of cavity optomechanical systems based on Bose-Einstein condensate.Specifically,we show that in comparison with its solid-state counterparts,almost a 3 order of magnitude enhancement in the size of the mechanical Schrödinger cat state could be achieved,characterizing a much smaller overlap between its two superposed coherent-state components.By exploiting this generated cat state,we further show how to engineer the quadrature squeezing of the mechanical mode.Besides,we also provide an efficient method to create multicomponent optical Schrödinger cat states in our proposed scheme.Our work opens up a new way to achieve nonclassical states of massive objects,facilitating the development of fault-tolerant quantum processors and sensors.展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400700)the National Natural Science Foundation of China(Grant Nos.11974125,and 12147143)。
文摘The Schrodinger cat state produced differently in two directions is anticipated to be a critical quantum resource in quantum information technologies.By exploring the interplay between quantum nonreciprocity and topology in a one-dimensional microcavity array,we obtain the Schrodinger cat state(a pure quantum state)in a chosen direction at the edge cavity,whereas a classical state in the other direction.This nonreciprocal generation of the cat state originates from the topologically protected chiralitymode excitation in the nontrivial phase,but in the trivial phase,the nonreciprocal generation of cat state vanishes.Thus,our proposal is switchable by tuning the parameters so that a topological phase transition occurs.Moreover,the obtained cat state has nonreciprocal high fidelity,nonclassicality,and quantum coherence,which are sufficient to be used in various one-way quantum technologies,e.g.,invisible quantum sensing,noise-tolerant quantum computing,and chiral quantum networks.Our work provides a general approach to control quantum nonreciprocities with the topological effect,which substantially broadens the fields of nonreciprocal photonics and topological physics.
文摘In this exposition paper we present the optimal transport problem of Monge-Ampère-Kantorovitch(MAK in short)and its approximative entropical regularization.Contrary to the MAK optimal transport problem,the solution of the entropical optimal transport problem is always unique,and is characterized by the Schrödinger system.The relationship between the Schrödinger system,the associated Bernstein process and the optimal transport was developed by Léonard[32,33](and by Mikami[39]earlier via an h-process).We present Sinkhorn’s algorithm for solving the Schrödinger system and the recent results on its convergence rate.We study the gradient descent algorithm based on the dual optimal question and prove its exponential convergence,whose rate might be independent of the regularization constant.This exposition is motivated by recent applications of optimal transport to different domains such as machine learning,image processing,econometrics,astrophysics etc..
文摘The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate quantum state is examined. In fact the method was applied in numerous cases—also by Schrödinger himself—without any use of the notion of time. Simultaneously, because of the development of computers, their use in solving the perturbation problems gradually decreased. However, the point of importance in the paper became the time. We demonstrate that collisions of a quantum system with the perturbation potential can be arranged along a circular scale of time whose properties provide us precisely with the energy terms obtained by the Schrödinger perturbation theory. This validity of results is checked till the perturbation order N = 7.
文摘In this paper, the Schr?dinger equation is solved by Modified separation of variables (MSV) method suggested by Pishkoo and Darus. Using this method, Meijer’s G-function solutions are derived in cylindrical coordinate system for quantum particle in cylindrical can. All elementary functions and most of the special functions which are the solution of extensive problems in physics and engineering are special cases of Meijer’s G-functions.
基金supported by the National Natural Science Foundation of China(NSFC)(11935006 and 11774086)the Science and Technology Innovation Program of Hunan Province(2020RC4047)+6 种基金L.-M.K.was supported by the NSFC(1217050862,11935006 and 11775075)X.-W.X.was supported by the NSFC(12064010)Natural Science Foundation of Hunan Province of China(2021JJ20036)Y.-F.J.was supported by the NSFC(12147156)the China Postdoctoral Science Foundation(2021M701176)the Science and Technology Innovation Program of Hunan Province(2021RC2078)B.J.L.was supported by Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210471).
文摘Schrödinger cat states,consisting of superpositions of macroscopically distinct states,provide key resources for a large number of emerging quantum technologies in quantum information processing.Here we propose how to generate and manipulate mechanical and optical Schrödinger cat states with distinguishable superposition components by exploiting the unique properties of cavity optomechanical systems based on Bose-Einstein condensate.Specifically,we show that in comparison with its solid-state counterparts,almost a 3 order of magnitude enhancement in the size of the mechanical Schrödinger cat state could be achieved,characterizing a much smaller overlap between its two superposed coherent-state components.By exploiting this generated cat state,we further show how to engineer the quadrature squeezing of the mechanical mode.Besides,we also provide an efficient method to create multicomponent optical Schrödinger cat states in our proposed scheme.Our work opens up a new way to achieve nonclassical states of massive objects,facilitating the development of fault-tolerant quantum processors and sensors.
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.