期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Normalized Ground State Solutions of Nonlinear Choquard Equations with Nonconstant Potential
1
作者 LI Nan ZHAO Hui-yan XU Li-ping 《Chinese Quarterly Journal of Mathematics》 2024年第3期250-261,共12页
In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/... In this paper,we mainly focus on the following Choquard equation-{△u-V(x)(I_(a*)|u|^(p))|u|^(p-2)u=λu,x∈R^(N),u∈H^(1)(R^(N))where N≥1,λ∈R will arise as a Lagrange multiplier,0<a<N and N+a/N<p<N+a+2/N Under appropriate hypotheses on V(x),we prove that the above Choquard equation has a normalized ground state solution by utilizing variational methods. 展开更多
关键词 Choquard equation nonconstant potential function Normalized ground state solutions variational methods
下载PDF
A positive solution of a nonlinear Schrdinger system with nonconstant potentials 被引量:1
2
作者 HE QiHan LUO Xiao 《Science China Mathematics》 SCIE CSCD 2017年第12期2407-2420,共14页
In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u^3+ β(x)v^2u, x ∈R^N,-?v + V_2(x)v = μ_2(x)v^3+ β(x)u^2v, x ∈R^N,u, v ∈H^1(R^N),wher... In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u^3+ β(x)v^2u, x ∈R^N,-?v + V_2(x)v = μ_2(x)v^3+ β(x)u^2v, x ∈R^N,u, v ∈H^1(R^N),where N = 1, 2, 3; V_1(x) and V_2(x) are positive and continuous, but may not be well-shaped; and μ_1(x), μ_2(x)and β(x) are continuous, but may not be positive or anti-well-shaped. We prove that the system has a positive solution when the coefficients Vi(x), μ_i(x)(i = 1, 2) and β(x) satisfy some additional conditions. 展开更多
关键词 schrdinger system nonconstant potentials variational methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部