In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws o...In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.展开更多
In high-speed optical communication systems,in order to improve the communication rate,the distance between pulses must be compressed,which will cause the problem of the interaction between optical pulses in optical c...In high-speed optical communication systems,in order to improve the communication rate,the distance between pulses must be compressed,which will cause the problem of the interaction between optical pulses in optical communication systems,which has been widely concerned by researches.In this paper,the bilinear method will be used to analyze the coupled high-order nonlinear Schro¨dinger equations and obtain their three-soliton solutions.Then,the influence of the relevant parameters in the three-soliton solution on the soliton inelastic interaction is studied.In addition,the constraint conditions of each parameter in the three-soliton solution are analyzed,the inelastic interaction properties of optical solitons under different parameter conditions are obtained,and the relevant laws of the inelastic interaction of solitons are studied.The results will have potential applications in the soliton control,all-optical switching and optical computing.展开更多
Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,t...Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11271171,11001072,and 11101381)Natural Science Foundation of Fujian Province,China(Grant No.2011J01010)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Natural Science Foundation of Huaqiao University,China(Grant No.10QZR21)
文摘In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.
基金the National Natural Science Foundation of China(Grant Nos.11875009 and 11905016).
文摘In high-speed optical communication systems,in order to improve the communication rate,the distance between pulses must be compressed,which will cause the problem of the interaction between optical pulses in optical communication systems,which has been widely concerned by researches.In this paper,the bilinear method will be used to analyze the coupled high-order nonlinear Schro¨dinger equations and obtain their three-soliton solutions.Then,the influence of the relevant parameters in the three-soliton solution on the soliton inelastic interaction is studied.In addition,the constraint conditions of each parameter in the three-soliton solution are analyzed,the inelastic interaction properties of optical solitons under different parameter conditions are obtained,and the relevant laws of the inelastic interaction of solitons are studied.The results will have potential applications in the soliton control,all-optical switching and optical computing.
基金the National Natural Science Foundation of China(Grant Nos.12074239 and 91850209)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2020A1515010927 and 2020ST084)+1 种基金the Fund from the Department of Education of Guangdong Province,China(Grant Nos.2019KTSCX038 and 2020KCXTD012)the Fund from Shantou University(Grant No.NTF18030).
文摘Frequency-comb emission via high-order harmonic generation(HHG)provides an alternative method for the coherent vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)radiation at ultrahigh repetition rates.In particular,the temporal and spectral features of the HHG were shown to carry profound insight into frequency-comb emission dynamics.Here we present an ab initio investigation of the temporal and spectral coherence of the frequency comb emitted in HHG of He atom driven by few-cycle pulse trains.We find that the emission of frequency combs features a destructive and constructive coherences caused by the phase interference of HHG,leading to suppression and enhancement of frequency-comb emission.The results reveal intriguing and substantially different nonlinear optical response behaviors for frequency-comb emission via HHG.The dynamical origin of frequency-comb emission is clarified by analyzing the phase coherence in HHG processes in detail.Our results provide fresh insight into the experimental realization of selective enhancement of frequency comb in the VUV–XUV regimes.