Chaos is closely associated with homoclinic orbits in deterministic nonlinear dynamics. In this paper, analytic expressions of homoclinic orbits for some (2+1)- dimensional nonlinear Schrodinger-like equations are ...Chaos is closely associated with homoclinic orbits in deterministic nonlinear dynamics. In this paper, analytic expressions of homoclinic orbits for some (2+1)- dimensional nonlinear Schrodinger-like equations are constructed based on Hirota's bilinear method, including long wave-short wave resonance interaction equation, generalization of the Zakharov equation, Mel'nikov equation, and g-Schrodinger equation are constructed based on Hirota's bilinear method.展开更多
In this work, the canonical transformation method is applied to a general second order differential equation (DE) in order to trasform it into a Schr?dinger-like DE. Our proposal is based on an auxiliary function g(x)...In this work, the canonical transformation method is applied to a general second order differential equation (DE) in order to trasform it into a Schr?dinger-like DE. Our proposal is based on an auxiliary function g(x) which determines the transformation needed to find exactly-solvable potentials associated to a known DE. To show the usefulness of the proposed approach, we consider explicitly their application to the hypergeometric DE with the aim to find quantum potentials with hypergeometric wavefunctions. As a result, different potentials are obtained depending on the choice of the auxiliary function;the generalized Scarf, Posh-Teller, Eckart and Rosen-Morse trigonometric and hyperbolic potentials, are derived by selecting g(x) as constant and proportional to the P(x) hypergeometric coefficient. Similarly, the choices g(x)~P(x)/x2 and g(x)~x2/P(x) give rise to a class of exactly-solvable generalized multiparameter exponential-type potentials, which contain as particular cases the Hulthén, Manning-Rosen and Woods-Saxon models, among others. Our proposition is general and can be used with other important DE within the frame of applied matematics and physics.展开更多
基金the National Natural Science Foundation of China(No.10501040)
文摘Chaos is closely associated with homoclinic orbits in deterministic nonlinear dynamics. In this paper, analytic expressions of homoclinic orbits for some (2+1)- dimensional nonlinear Schrodinger-like equations are constructed based on Hirota's bilinear method, including long wave-short wave resonance interaction equation, generalization of the Zakharov equation, Mel'nikov equation, and g-Schrodinger equation are constructed based on Hirota's bilinear method.
基金supported by the projects UAM-A-CBI-2232004 and 009.JGR thanks to the Instituto Politécnico Nacional for the financial support given through the COFAA-IPN project SIP-200150019.
文摘In this work, the canonical transformation method is applied to a general second order differential equation (DE) in order to trasform it into a Schr?dinger-like DE. Our proposal is based on an auxiliary function g(x) which determines the transformation needed to find exactly-solvable potentials associated to a known DE. To show the usefulness of the proposed approach, we consider explicitly their application to the hypergeometric DE with the aim to find quantum potentials with hypergeometric wavefunctions. As a result, different potentials are obtained depending on the choice of the auxiliary function;the generalized Scarf, Posh-Teller, Eckart and Rosen-Morse trigonometric and hyperbolic potentials, are derived by selecting g(x) as constant and proportional to the P(x) hypergeometric coefficient. Similarly, the choices g(x)~P(x)/x2 and g(x)~x2/P(x) give rise to a class of exactly-solvable generalized multiparameter exponential-type potentials, which contain as particular cases the Hulthén, Manning-Rosen and Woods-Saxon models, among others. Our proposition is general and can be used with other important DE within the frame of applied matematics and physics.