Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric in...Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.展开更多
In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interior...In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.展开更多
In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequa...In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.展开更多
In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s ...In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568.展开更多
基金The Doctoral Programs Foundation(20113401110009) of Education Ministry of Chinathe Natural Science Research Project(2012kj11) of Hefei Normal Universitythe NSF(KJ2013A220) of Anhui Province
文摘Schur convexity, Schur geometrical convexity and Schur harmonic convexityof a class of symmetric functions are investigated. As consequences some knowninequalities are generalized. In addition, a class of geometric inequalities involvingn-dimensional simplex in n-dimensional Euclidean space En and several matrix inequalitiesare established to show the applications of our results.
文摘In this paper,by making use of Divergence theorem for multiple integrals,we establish some integral inequalities for Schur convex functions defined on bodies B⊂R^(n)that are symmetric,convex and have nonempty interiors.Examples for three dimensional balls are also provided.
基金supported by NSFC (60850005)NSF of Zhejiang Province(D7080080, Y7080185, Y607128)
文摘In this article, we prove that the symmetric function Fn(x,r)=∑i1+i2+……in=r(x1(i1x2^i2……xn^in)1/r is Schur harmonic convex for x ∈ R+n and r ∈N -=(1, 2, 3,...} As its applications, some analytic inequalities are established.
文摘In this paper, we show that some functions related to the dual Simpson’s formula and Bullen- Simpson’s formula are Schur-convex provided that f is four-convex. These results should be compared to that of Simpson’s formula in Applied Math. Lett. (24) (2011), 1565-1568.
基金Supported by the Doctoral Programs Foundation of Education Ministry of China(20113401110009)Natural Science Research Project of Hefei Normal University(2012kj11)Universities Natural Science Foundation of Anhui Province(KJ2013A220)