A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus su...The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus surface force is approximated by Fourier series, thus the iteration derivation can be conducted according to the precision required, finally, the stress results with high precision are obtained.展开更多
In vitro skin sensitization testing methods based on the adverse outcome pathway(AOP)were used to evaluate the skin sensitization potencies of 5 commonly used preservatives.According to the“2 out of 3”principle of t...In vitro skin sensitization testing methods based on the adverse outcome pathway(AOP)were used to evaluate the skin sensitization potencies of 5 commonly used preservatives.According to the“2 out of 3”principle of the integrated approaches to testing and assessment(IATA)the direct peptide reactivity assay(DPRA)and the human cell line activation test(h-CLAT)were used to detect the preservatives commonly used in cosmetics,including phenoxyethanol.methyl paraben,propyl paraben,imidazolidinyl urea and DMDM hydantoin.The DPRA and the h-CLA were carried out according to the OEC442C and 442E guidelines,respectively.The results show that.phenoxyethanol and methyl paraben are both negative in DPRA and h-CLAT while imidazolidinyl urea and DMDM hydantoin are both positive in these two tests.Propyl paraben has negative result in DPRA but positive result in h-CLAT.Therefore,imidazolidiny urea and DMDM hydantoin are sensitizers,while phenoxyethanol and methylparaben are non-sensitizers.Taken animal and human data into consideration,it is predicted that propyl paraben should be a non-sensitizer.The combination of DPRA and h-CLAT can make up for the limitations of using a single method,and it is suitable for the preliminary screening of cosmetic raw materials according to skin sensitization.展开更多
The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which...The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computat...In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.展开更多
In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a c...This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix , the time complexity of SVD operation is O(mn2), which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method.展开更多
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu...In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.展开更多
The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linear...The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.展开更多
The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have th...The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have the advantages of parallel computing, stability and good accuracy. Tn this paper for the two-dimensional diffusion equation, the net region is divided into bands, a special kind of block. This method is called the alternating Band Crank-Nicolson method.展开更多
Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ...Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.展开更多
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)...The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
文摘The stress analysis of surrounding rock for two random geometry tunnels is studied in this paper by using Schwarz’s alternating method. The simple and effective alternating algorithm is found, in which the surplus surface force is approximated by Fourier series, thus the iteration derivation can be conducted according to the precision required, finally, the stress results with high precision are obtained.
文摘In vitro skin sensitization testing methods based on the adverse outcome pathway(AOP)were used to evaluate the skin sensitization potencies of 5 commonly used preservatives.According to the“2 out of 3”principle of the integrated approaches to testing and assessment(IATA)the direct peptide reactivity assay(DPRA)and the human cell line activation test(h-CLAT)were used to detect the preservatives commonly used in cosmetics,including phenoxyethanol.methyl paraben,propyl paraben,imidazolidinyl urea and DMDM hydantoin.The DPRA and the h-CLA were carried out according to the OEC442C and 442E guidelines,respectively.The results show that.phenoxyethanol and methyl paraben are both negative in DPRA and h-CLAT while imidazolidinyl urea and DMDM hydantoin are both positive in these two tests.Propyl paraben has negative result in DPRA but positive result in h-CLAT.Therefore,imidazolidiny urea and DMDM hydantoin are sensitizers,while phenoxyethanol and methylparaben are non-sensitizers.Taken animal and human data into consideration,it is predicted that propyl paraben should be a non-sensitizer.The combination of DPRA and h-CLAT can make up for the limitations of using a single method,and it is suitable for the preliminary screening of cosmetic raw materials according to skin sensitization.
基金supported by the National Natural Science Foundation of China(51078150)the National Natural Science Foundation of China(11602087)+1 种基金the State Key Laboratory of Subtropical Building Science,South China University of Technology(2017ZB32)National Undergraduate Innovative and Entrepreneurial Training Program(201810561180).
文摘The alternating method based on the fundamental solutions of the infinite domain containing a crack,namely Muskhelishvili’s solutions,divides the complex structure with a crack into a simple model without crack which can be solved by traditional numerical methods and an infinite domain with a crack which can be solved by Muskhelishvili’s solutions.However,this alternating method cannot be directly applied to the edge crack problems since partial crack surface of Muskhelishvili’s solutions is located outside the computational domain.In this paper,an improved alternating method,the spline fictitious boundary element alternating method(SFBEAM),based on infinite domain with the combination of spline fictitious boundary element method(SFBEM)and Muskhelishvili’s solutions is proposed to solve the edge crack problems.Since the SFBEM and Muskhelishvili’s solutions are obtained in the framework of infinite domain,no special treatment is needed for solving the problem of edge cracks.Different mixed boundary conditions edge crack problems with varies of computational parameters are given to certify the high precision,efficiency and applicability of the proposed method compared with other alternating methods and extend finite element method.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金the National Natural Science Foundation of China and China State Key Project for Basic Researches
文摘In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper.
文摘In this paper the Schwarz alternating method for a fourth-order elliptic variational inequality problem is considered by way of the equivalent form, and the geometric convergence is obtained on two subdomains.
文摘This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix , the time complexity of SVD operation is O(mn2), which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method.
基金supported in part by the National Natural Science Foundation of China(11361018,11461015)Guangxi Natural Science Foundation(2014GXNSFFA118001)+3 种基金Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112,YQ16112)Guilin Science and Technology Project(20140127-2)the Innovation Project of Guangxi Graduate Education and Innovation Project of GUET Graduate Education(YJCXB201502)Guangxi Key Laboratory of Cryptography and Information Security(GCIS201624)
文摘In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.
文摘The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.
基金The work presented in this paper was supported by the National Science Foundation of China
文摘The Alternating Segment Crank-Nicolson scheme for one-dimensional diffusion equation has been developed in [ 1 ], and the Alternating Block Crank-Nicolson method for two-dimensional problem in [2]. The methods have the advantages of parallel computing, stability and good accuracy. Tn this paper for the two-dimensional diffusion equation, the net region is divided into bands, a special kind of block. This method is called the alternating Band Crank-Nicolson method.
基金supported by Research Grant from the Kajima Foundation,JST CREST Grant No.JPMJCR1911,JapanJSPS KAKENHI(Nos.17K06633,21K04351).
文摘Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.
文摘The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.