We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstl...We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstly, in the high energy limit, we find that the phase along the geodesic keeps the double of that along the null. Secondly, we calculate the phase on the condition that the cosmological constant, A, is a small quantity. The correction of the phase due to A is given. Finally, we calculate the proper oscillation length in Schwarzschild-de Sitter space-time, which increases because of the existence of A, compared with the result in Schwarzschild space-time. All of our results can be reduced to those in Schwarzschild space-time as A approaches to zero.展开更多
We revisit Parikh-Wilczek tunneling through the de Sitter horizon and obtain the tunneling rate in Schwarzschildde Sitter space,which is non-thermal and closely related to the change of entropy.We discuss the thermody...We revisit Parikh-Wilczek tunneling through the de Sitter horizon and obtain the tunneling rate in Schwarzschildde Sitter space,which is non-thermal and closely related to the change of entropy.We discuss the thermodynamics of Schwarzschild-de Sitter space and show existence of correlation which can ensure conservation of the total entropy in the transition process of Schwarzschild-de Sitter space to de Sitter space.The correlation and the conserved entropy provide a way to explain the entropy in empty de Sitter space.展开更多
In this paper, we first calculate the emission rate of the massive particles' de Sitter tunneling across the cosmological horizon of Schwarzschild-de Sitter black holes to the second order accuracy. Then, by assuming...In this paper, we first calculate the emission rate of the massive particles' de Sitter tunneling across the cosmological horizon of Schwarzschild-de Sitter black holes to the second order accuracy. Then, by assuming the emission process satisfies an underlying unitary theory, we have obtained the corrected entropy for cosmological horizon. Finally, a discussion about the de Sitter tunneling is presented.展开更多
The thermodynamical quantities are usually considered as the independent ones in the case of the existence of multi-horizons. Comparing the first laws for the event horizon and cosmological horizon of Schwarzschild-de...The thermodynamical quantities are usually considered as the independent ones in the case of the existence of multi-horizons. Comparing the first laws for the event horizon and cosmological horizon of Schwarzschild-de Sitter space-time, we find them share the same values of mass, charge and cosmological constant, which might imply that there exists entanglement between the two horizons. Naturally we attempt to add an extra term, which contributed to the total entropy of the black hole. We recalculate the total entropy and the effective specific heat by taking the globally effective first law and find that they will be emanative when the two horizons approach to each other.展开更多
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and t...We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.展开更多
We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the...We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the surface area at the horizons without cut-off. And reveal the possible value of the minimum length.展开更多
文摘We study the mass neutrino interference phase in Schwarzschild-de Sitter space time along the null trajectory and the geodesic line and obtain the effects of cosmological constant A on the neutrino oscillation. Firstly, in the high energy limit, we find that the phase along the geodesic keeps the double of that along the null. Secondly, we calculate the phase on the condition that the cosmological constant, A, is a small quantity. The correction of the phase due to A is given. Finally, we calculate the proper oscillation length in Schwarzschild-de Sitter space-time, which increases because of the existence of A, compared with the result in Schwarzschild space-time. All of our results can be reduced to those in Schwarzschild space-time as A approaches to zero.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074283 and 11104324.
文摘We revisit Parikh-Wilczek tunneling through the de Sitter horizon and obtain the tunneling rate in Schwarzschildde Sitter space,which is non-thermal and closely related to the change of entropy.We discuss the thermodynamics of Schwarzschild-de Sitter space and show existence of correlation which can ensure conservation of the total entropy in the transition process of Schwarzschild-de Sitter space to de Sitter space.The correlation and the conserved entropy provide a way to explain the entropy in empty de Sitter space.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10873003 and 10633010the 973 Program (2007CB815405)+1 种基金the Bureau of Education of Guangzhou Municipality(No.11 Sui-Jiao-Ke(2009))GDUPS(2009)
文摘In this paper, we first calculate the emission rate of the massive particles' de Sitter tunneling across the cosmological horizon of Schwarzschild-de Sitter black holes to the second order accuracy. Then, by assuming the emission process satisfies an underlying unitary theory, we have obtained the corrected entropy for cosmological horizon. Finally, a discussion about the de Sitter tunneling is presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675139,11605137,11435006,11405130the Double First-Class University Construction Project of Northwest University+1 种基金supported by the China Postdoctoral Science Foundation under Grant No.2017M623219Shaanxi Postdoctoral Science Foundation
文摘The thermodynamical quantities are usually considered as the independent ones in the case of the existence of multi-horizons. Comparing the first laws for the event horizon and cosmological horizon of Schwarzschild-de Sitter space-time, we find them share the same values of mass, charge and cosmological constant, which might imply that there exists entanglement between the two horizons. Naturally we attempt to add an extra term, which contributed to the total entropy of the black hole. We recalculate the total entropy and the effective specific heat by taking the globally effective first law and find that they will be emanative when the two horizons approach to each other.
文摘We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.
基金Supported by National Natural Science Foundation of China under Grant Nos.11275099,11435006,11405130the Double FirstClass University Construction Project of Northwest University
文摘We study the entropy of Schwarzschild-de Sitter black holes based on generalized uncertainty principle with brick-wall method by counting degrees of freedom near the horizons and obtain the entropy proportional to the surface area at the horizons without cut-off. And reveal the possible value of the minimum length.