Cloud computing is an advance computing model using which several applications,data and countless IT services are provided over the Internet.Task scheduling plays a crucial role in cloud computing systems.The issue of...Cloud computing is an advance computing model using which several applications,data and countless IT services are provided over the Internet.Task scheduling plays a crucial role in cloud computing systems.The issue of task scheduling can be viewed as the finding or searching an optimal mapping/assignment of set of subtasks of different tasks over the available set of resources so that we can achieve the desired goals for tasks.With the enlargement of users of cloud the tasks need to be scheduled.Cloud’s performance depends on the task scheduling algorithms used.Numerous algorithms have been submitted in the past to solve the task scheduling problem for heterogeneous network of computers.The existing research work proposes different methods for data intensive applications which are energy and deadline aware task scheduling method.As scientific workflow is combination of fine grain and coarse grain task.Every task scheduled to VM has system overhead.If multiple fine grain task are executing in scientific workflow,it increase the scheduling overhead.To overcome the scheduling overhead,multiple small tasks has been combined to large task,which decrease the scheduling overhead and improve the execution time of the workflow.Horizontal clustering has been used to cluster the fine grained task further replication technique has been combined.The proposed scheduling algorithm improves the performance metrics such as execution time and cost.Further this research can be extended with improved clustering technique and replication methods.展开更多
为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级...为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。展开更多
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l...Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution.展开更多
文摘Cloud computing is an advance computing model using which several applications,data and countless IT services are provided over the Internet.Task scheduling plays a crucial role in cloud computing systems.The issue of task scheduling can be viewed as the finding or searching an optimal mapping/assignment of set of subtasks of different tasks over the available set of resources so that we can achieve the desired goals for tasks.With the enlargement of users of cloud the tasks need to be scheduled.Cloud’s performance depends on the task scheduling algorithms used.Numerous algorithms have been submitted in the past to solve the task scheduling problem for heterogeneous network of computers.The existing research work proposes different methods for data intensive applications which are energy and deadline aware task scheduling method.As scientific workflow is combination of fine grain and coarse grain task.Every task scheduled to VM has system overhead.If multiple fine grain task are executing in scientific workflow,it increase the scheduling overhead.To overcome the scheduling overhead,multiple small tasks has been combined to large task,which decrease the scheduling overhead and improve the execution time of the workflow.Horizontal clustering has been used to cluster the fine grained task further replication technique has been combined.The proposed scheduling algorithm improves the performance metrics such as execution time and cost.Further this research can be extended with improved clustering technique and replication methods.
文摘为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。
文摘Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution.