The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In ...The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical t...Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical to have the current methods and equipment for measuring bridge scouring replaced with technology that could acquire real-time bridge scouring data. Despite the critical need for real-time data acquisition, the harsh environmental conditions have prevented the scientific community from acquiring real-time data. Harsh environmental conditions were addressed by the developmental of an automated, remote data collection system, allowing real-time data such as scour movement, scour depth, and scour trend to be viewed in a safe location. As a result, accurate sea-floor movements were seen for the first time, aiding the direction and future of bridge scour research, ultimately contributing greatly to the safety of bridges.展开更多
Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submer...Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.展开更多
Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this tec...Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.展开更多
Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehend...Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.展开更多
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed ...Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.展开更多
The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the acti...The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.展开更多
By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass ...By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.展开更多
In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are sum...In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.展开更多
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few exp...As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.展开更多
Local scour at monopile foundations of offshore wind turbines is one of the most critical structural stability issues.This article reviews the contemporary methods of scour countermeasures at monopile foundations.Thes...Local scour at monopile foundations of offshore wind turbines is one of the most critical structural stability issues.This article reviews the contemporary methods of scour countermeasures at monopile foundations.These methods include armouring countermeasures(e.g.,riprap protection)to enhance the anti-scour ability of the bed materials and flow-altering countermeasures(e.g.,collars and sacrificial piles)to reduce downflow or change flow patterns around the monopiles.Stability number and size-selection equations for riprap armour layers are summarised and compared.Moreover,other alternative methods to riprap are briefly introduced and presented.A typical graph of the scour depth reduction with different collar sizes and elevations under specific test conditions is summarised and compared with a plot for a pile founded on a caisson.Reduction rates for different flow-altering countermeasures,including the collar,are listed and compared.A newly developed soil improvement method,namely microbially induced calcite precipitation(MICP),is also reviewed and introduced as a scour protection method.As a popular bio-soil treatment method,MICP has a good potential as a scour countermeasure method.Bio-soil treatment methods and traditional armouring methods are defined as active and passive soil enhancement scour countermeasures,respectively.展开更多
Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In...Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In this paper, several aspects of local scour around bridge piers in tidal current, including the scour development process, the plane form of a scour hole and the maximum scour depth, are studied through movable bed flume experiments.展开更多
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element i...To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.展开更多
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and ...The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.展开更多
Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and a...Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.展开更多
Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered ...Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.展开更多
In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental in...In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.展开更多
基金supported by Shenzhen Science and Technology Program(Grant No.JCYJ20220818102012024)Hong Kong Research Grants Council(Grant Nos.T21–602/16-R and RGC R5037–18)。
文摘The flow field near a spur dike such as down flow and horseshoe vortex system(HVS)are susceptible to the topographic changes in the local scouring process,resulting in variation of the sediment transport with time.In this study,large eddy simulations with fixed-bed at different scouring stages were conducted to investigate the changes in flow field.The results imply that the bed deformation leads to an increase in flow rate per unit area,which represent the capability of sediment transportation by water,in the scour hole.Moreover,the intensity of turbulent kinetic energy and bimodal motion near the sand bed induced by the HVS were also varied.However,the peak moments between the two sediment transport mechanisms were different.Hence,understanding the complex feedback mechanism between topography and flow field is essential for the local scour problem.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
文摘Because of the complex nature of the changes in the current and movement of the riverbeds by bridge scouring, it is impossible to understand or predict these changes. In order to have a reliable data, it is critical to have the current methods and equipment for measuring bridge scouring replaced with technology that could acquire real-time bridge scouring data. Despite the critical need for real-time data acquisition, the harsh environmental conditions have prevented the scientific community from acquiring real-time data. Harsh environmental conditions were addressed by the developmental of an automated, remote data collection system, allowing real-time data such as scour movement, scour depth, and scour trend to be viewed in a safe location. As a result, accurate sea-floor movements were seen for the first time, aiding the direction and future of bridge scour research, ultimately contributing greatly to the safety of bridges.
基金support from the National Natural Science Foundation of China (Nos.52301324 and 52001276)the Natural Science Foundation of Zhejiang Province (No.LQ24E090001)+2 种基金the Open Fund of Key Laboratory of Estuary and Coast of Zhejiang Province (No.ZIHE21005)the Natural Science Foundation of Ningbo (No.2021J096)the Zhejiang Transportation Science and Technology (No.2021064)。
文摘Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.
基金supported by the Research on the Prediction Mechanism of Corrosion for High Strength Steel in Deep Sea Service Driven by Multi-Scale,High-Dimension and Small-Sample Data(C2301002635)Research on the Influence of Nozzle Structure on the Scouring Effect of Submerged Water Jet(2023R411045)+1 种基金the Zhejiang Ocean University Outstanding Master’s Thesis Cultivation Project(ZJOUYJS20230018)the Scientific Research Project of Zhejiang Graduate Education Society in 2022(2022-021)which was gained by Chen.
文摘Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study.
基金financially supported by the National Natural Science Foundation of China(No.52301326)the China Postdoctoral Science Foundation(No.2023M731999)the Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2024KFKT017).
文摘Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
文摘Local scour around pipelines crossing rivers or in marine environments is a significant concern.It can lead to failure of the pipelines resulting in environmental side effects and economic losses.This study developed an experimental method to reduce local scour around pipelines with a steady flow of clear water by installing cylindrical and cubical sacrificial piles.Three sizes of sacrificial piles were examined in a linear arrangement.Sacrificial piles were installed on the upstream side of the pipeline at three distances.Maximum scour depth reduction rates below the pipeline were computed.The results showed that sacrificial piles could protect a pipeline from local scour.A portion of scoured sediment around the sacrificial piles was deposited beneath the pipeline.This sediment accumulation reduced the scour depth beneath the pipeline.Analysis of the experimental results demonstrated that the size of piles(d),the spacing between piles,and the distance between the pipe and piles(Xp)were the variables that reduced the maximum scour beneath the pipeline with a diameter of D.For the piles with d=0.40D and 0.64D,X_(p)=4OD was the optimal distance to install a group of piles,and cubical piles could mitigate scour more effectively than cylindrical piles under similar conditions.For the piles with d=D,the greatest reduction in scour depth was achieved at X_(p)=50D with any desired spacings between piles,and cylindrical piles in this dimension could protect the pipeline against scour more effectively than cubical piles.
基金the National Natural Science Foundation of China!(No.599790 1 9)
文摘The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.
基金National Basic Research Program of China,No.2007CB407201National Key Technology R&D Program,No.2006BAB06B01-06Science and Technique Development Foundation of YRIHR,No.200603
文摘By scouring experiments, the changeable process and characteristics of sediment yield in the hillslope-gully side erosion system with different coverage degrees and spatial locations of grass were studied. Five grass coverage degrees of 0, 30%, 50%, 70%, 90%, three spatial locations of grass (upslope, mid-slope, low-slope) and two water inflow rates of 3.2 L/min, 5.2 L/min were applied to a 0.5 by 7 m soil bed in scouring experiments. Results showed that the sediment yield decreased with the increase of grass coverage degree at 3.2 L/min water inflow rate in scouring experiments and the sediment yield with different grass locations on the sloping surface was in the order of upper 〉 middle 〉 lower. At 5.2 L/min water inflow rate, the differences of sediment yield among various grass coverage degrees were increased, whereas the changeable tendency of sediment yield with different grass locations on the whole sloping surface was not very obvious. The proportion of sediment yield from the gully side increased in an exponential relationship with the increase of grass coverage degree When the grass was located on the lower position of hillslope, the influence for accelerating gully erosion is the greatest.
基金supported by the Major International Joint Research Project P0W3M of the National Natural Science Foundation of China(Grant No.51920105013)the General Project of the National Natural Science Foundation of China(Grant No.52071127).
文摘In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.
基金financially supported by the National Key Research and Development Program of China (No.2017YFC1404700)the National Natural Science Foundation of China (Nos.51279189,51239001 and 51509023)the China Scholarship Council
文摘As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.
基金supported by the Major International Joint Research Project POW3M of the National Natural Science Foundation of China(Grant No.51920105013)the Joint Doctoral Scholarship from Chinese Scholarship Council(CSC)and the University of Auckland.
文摘Local scour at monopile foundations of offshore wind turbines is one of the most critical structural stability issues.This article reviews the contemporary methods of scour countermeasures at monopile foundations.These methods include armouring countermeasures(e.g.,riprap protection)to enhance the anti-scour ability of the bed materials and flow-altering countermeasures(e.g.,collars and sacrificial piles)to reduce downflow or change flow patterns around the monopiles.Stability number and size-selection equations for riprap armour layers are summarised and compared.Moreover,other alternative methods to riprap are briefly introduced and presented.A typical graph of the scour depth reduction with different collar sizes and elevations under specific test conditions is summarised and compared with a plot for a pile founded on a caisson.Reduction rates for different flow-altering countermeasures,including the collar,are listed and compared.A newly developed soil improvement method,namely microbially induced calcite precipitation(MICP),is also reviewed and introduced as a scour protection method.As a popular bio-soil treatment method,MICP has a good potential as a scour countermeasure method.Bio-soil treatment methods and traditional armouring methods are defined as active and passive soil enhancement scour countermeasures,respectively.
文摘Local scour around a bridge pier is an important parameter for the design of a bridge. Compared with the local scour in a mono-directional current, the local scour in a tidal current has its unique characteristics. In this paper, several aspects of local scour around bridge piers in tidal current, including the scour development process, the plane form of a scour hole and the maximum scour depth, are studied through movable bed flume experiments.
基金National Natural Science Foundation of China Under Grant No.50878147
文摘To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.
基金the National Natural Science Foundation of China (Nos. 40901007, 50979103)
文摘The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.
基金supported by 973 Program (2008CB425803)the National Natural Science Foundation of China (Grant No. 50979064)
文摘Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.
基金supported by the National Natural Science Foundation of China (Grant No.51209195)Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process,Chinese Academy of Sciences,Science and Technology Service Network Initiative of Chinese Academy of Sciences (Grant No.KFJ-EW-STS-094)the Youth Foundation of the Institute of Mountain Hazards and Environment,CAS (Grant No.SDS-QN-1302)
文摘Debris flows are one of the common natural hazards in mountainous areas.They often cause devastating damage to the lives and property of local people.The sabo dam construction along a debris flow valley is considered to be a useful method for hazard mitigation.Previous work has concentrated on the different types of sabo dams such as close-type sabo dam,open-type sabo dam.However,little attention has been paid to the spillway structure of sabo dam.In the paper,a new type of spillway structure with lateral contraction was proposed.Debris flow patterns under four different spillway structures were investigated.The projection theory was employed to predict trajectory of debris flow out from the spillway and to estimate the incident angle and terminal velocity before it plunged into the scour hole behind the sabo dam.The results indicated that the estimated data were in good agreement with the experimental ones.The discrepancy between the estimated and experimental values of main parameters remained below 21.82%(relative error).Additionally,the effects of debris flow scales under different spillway structures were considered to study the scour law.Although the debris flow pattern and scour law behind the sabo dam under different operating conditions was analyzed in this paper,further study on the scour mechanism andthe maximum scour depth estimation based on scour theory is still required in the future.
基金Supported by the Ninth 5-Year Priorities Program(Project No.KZ951-A1-405),Chinese Academy of Sciences
文摘In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.