This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block co...This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.展开更多
In high speed transmission system such as SDH,parallel scrambling technique is re-quired.This paper presents a method of expanding matrix,which makes the traditional ma-trix method capable of realizing parallel scramb...In high speed transmission system such as SDH,parallel scrambling technique is re-quired.This paper presents a method of expanding matrix,which makes the traditional ma-trix method capable of realizing parallel scramblers of any size.A novel method called delayoperator method is also described in this paper.The 8-bit parallel scrambling circuitry ofSDH has been realized with the two methods.展开更多
Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function...Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.展开更多
Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution.Synthetic chromosome rearrangement and modification by LoxP-mediated evolution(SCRaMbLE)has been appl...Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution.Synthetic chromosome rearrangement and modification by LoxP-mediated evolution(SCRaMbLE)has been applied to explore large-scale genomic rearrangements,yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites.Here,we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes,ranging from 1 to 300 kb.Furthermore,it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin.Collectively,our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.展开更多
Consider the subshifts induced by constant-length primitive substitutions on two symbols. By investigating the equivalent version for the existence of Li-Yorke scrambled sets and by proving the non-existence of Schwei...Consider the subshifts induced by constant-length primitive substitutions on two symbols. By investigating the equivalent version for the existence of Li-Yorke scrambled sets and by proving the non-existence of Schweizer-Smítal scrambled sets, we completely reveal for this class of subshifts the chaotic behaviors possibly occurring in the sense of Li-Yorke and Schweizer-Smítal.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Genetic variation drives phenotypic evolution within populations. Genetic variation can be divided into different forms according to the size of genomic changes. However, study of large-scale genomic variation such as...Genetic variation drives phenotypic evolution within populations. Genetic variation can be divided into different forms according to the size of genomic changes. However, study of large-scale genomic variation such as structural variation and aneuploidy is still limited and mainly based on the static, predetermined feature of individual genomes. Here, using SCRaMbLE,different levels of loss of heterozygosity(LOH) events including short-range LOH, long-range LOH and whole chromosome LOH were detected in evolved strains. By contrast, using rapid adaptive evolution, aneuploidy was detected in the adaptive strains. It was further found that deletion of gene GLN3, long-range LOH in the left arm of synthetic chromosome Ⅹ, whole chromosome LOH of synthetic chromosome Ⅹ, and duplication of chromosome Ⅷ(trisomy) lead to increased rapamycin resistance in synthetic yeast. Comparative analysis of genome stability of evolved strains indicates that the aneuploid strain has a higher frequency of degeneration than the SCRaMbLEd strain. These findings enrich our understanding of genetic mechanism of rapamycin resistance in yeast, and provide valuable insights into yeast genome architecture and function.展开更多
1 A problem or scrambled setCHAOTIC behavior is a manifestation of complexity of nonlinear dynamical systems. Since theobjects, methods, aims, or emphases of study are distinct, there are some variant definitionsof ch...1 A problem or scrambled setCHAOTIC behavior is a manifestation of complexity of nonlinear dynamical systems. Since theobjects, methods, aims, or emphases of study are distinct, there are some variant definitionsof chaos given by different authors, or given by the same author in his different works. Thefollowing definition mainly stems from Li and Yorke.展开更多
Varied environmental stress can affect cell growth and activity of the cellular catalyst.Traditional path of adaptive evolution generally takes a long time to achieve a tolerance phenotype,meanwhile,it is a challenge ...Varied environmental stress can affect cell growth and activity of the cellular catalyst.Traditional path of adaptive evolution generally takes a long time to achieve a tolerance phenotype,meanwhile,it is a challenge to dissect the underlying genetic mechanism.Here,using SCRaMbLE,a genome scale tool to generate random structural variations,a total of 222 evolved yeast strains with enhanced environmental tolerances were obtained in haploid or diploid yeasts containing six synthetic chromosomes.Whole genome sequencing of the evolved strains revealed that these strains generated different structural variants.Notably,by phenotypic-genotypic analysis of the SCRaMbLEd strains,we find that a deletion of gene YFR009W(GCN20)can improve salt tolerance of Saccharomyces cerevisiae,and a deletion of gene YER056C can improve 5-flucytosine tolerance of Saccharomyces cerevisiae.This study shows applications of SCRaMbLE to accelerate phenotypic evolution for varied environmental stress and to explore relationships between structural variations and evolved phenotypes.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and...With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.展开更多
Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of int...Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.展开更多
The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate be...The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.展开更多
In the present paper,we propose an efficient scrambled estimator of population mean of quantitative sensitive study variable,using general linear transformation of nonsensitive auxiliary variable.Efficiency comparison...In the present paper,we propose an efficient scrambled estimator of population mean of quantitative sensitive study variable,using general linear transformation of nonsensitive auxiliary variable.Efficiency comparisons with the existing estimators have been carried out both theoretically and numerically.It has been found that our optimal scrambled estimator is always more efficient than most of the existing scrambled estimators and also it is more efficient than few other scrambled estimators under some conditions.展开更多
Geopolitical as well as economic concerns underlie the worldwide rush to establish petroleum exchanges New oil exchange programs have recently been mushrooming around the world. The Shanghai Petroleum Exchange, which ...Geopolitical as well as economic concerns underlie the worldwide rush to establish petroleum exchanges New oil exchange programs have recently been mushrooming around the world. The Shanghai Petroleum Exchange, which uses renminbi in its transactions, kicked off operations on August 18. In May,展开更多
In today’s information society,image encryption technology is crucial to protecting Internet security.However,traditional image encryption algorithms have problems such as insufficient chaotic characteristics,insuffi...In today’s information society,image encryption technology is crucial to protecting Internet security.However,traditional image encryption algorithms have problems such as insufficient chaotic characteristics,insufficient randomness of keys,and insecure Ribonucleic Acid(RNA)encoding.To address these issues,a chaos-RNA encryption scheme that combines chaotic maps and RNA encoding was proposed in this research.The initial values and parameters of the chaotic system are first generated using the Secure Hash Algorithm 384(SHA-384)function and the plaintext image.Next,the Lühyperchaotic system sequence was introduced to change the image’s pixel values to realize block scrambling,and further disturbance is achieved through spiral index sequence to enhance encryption effectiveness.Subsequently,to obtain the final encrypted image,the diffusion is accomplished through different RNA encoding rules and operation rules corresponding to the chaotic sequence generated by an improved one-dimensional chaotic map(1DCM).Here innovatively propose four new RNA operation rules,increasing the difficulty of decryption.Simulation results demonstrate that the normalized pixel change rate(NPCR)and the unified average changed intensity(UACI)values of the tested encrypted images were 99.61%and 33.46%,respectively.The average ciphertext entropy value in the Red Green Blue(RGB)channels were 7.9986,7.991,and 7.991.Furthermore,this algorithm exhibits a low correlation coefficient and enhanced robustness.This encryption method effectively improves the security and reliability of image encryption compared to other similar techniques.展开更多
As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts o...As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.展开更多
In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission ...In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission secrecy,compressive encryption method is proposed to accomplish compression and encryption based on fractional order hyper chaotic system that incorporates Compressive Sensing(CS),pixel level,bit level scrambling and nucleotide Sequences operations.The measurement matrix generates by the fractional order hyper chaotic system strengthens the efficiency of the encryption process.To avoid plain text attack,the CS measurement is scrambled to its pixel level,bit level scrambling decreases the similarity between the adjacent measurements and the nucleotide sequence operations are done on the scrambled bits,increasing the encryption.Two stages are comprised in the reconstruction technique,the first stage uses the intra-frame similarity and offers robust preliminary retrieval for each frame,and the second stage iteratively improves the efficiency of reconstruction by integrating inter frame Multi Hypothesis(MH)estimation and weighted residual sparsity modeling.In each iteration,the residual coefficient weights are modified using a mathematical approach based on the MH predictions,and the Split Bregman iteration algorithm is defined to resolve weighted l1 regularization.Experimental findings show that the proposed algorithm provides good compression of video coupled with an efficient encryption method that is resistant to multiple attacks.展开更多
基金supported by the National Natural Science Foundation of China(61171170) the Natural Science Foundation of Anhui Province(1408085QF115)
文摘This study proposes a novel multi-fractal spectrumbasedapproach to distinguish linear block codes from its selfsynchronousscrambled codes. Given that the linear block codeand self-synchronous scrambled linear block code share the propertyof linear correlation, the existing linear correlation-basedidentification method is invalid for this case. This drawback can becircumvented by introducing a novel multi-fractal spectrum-basedmethod. Simulation results show that the new method has highrobustness and under the same conditions of bit error, the lowerthe code rate, the higher the recognition rate. Thus, the methodhas significant potential for future application in engineering.
文摘In high speed transmission system such as SDH,parallel scrambling technique is re-quired.This paper presents a method of expanding matrix,which makes the traditional ma-trix method capable of realizing parallel scramblers of any size.A novel method called delayoperator method is also described in this paper.The 8-bit parallel scrambling circuitry ofSDH has been realized with the two methods.
文摘Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC2100800)the National Natural Science Foundation of China(Grant No.22208241)+1 种基金China Postdoctoral Science Foundation(Grant No.2023M732591)the Key R&D Program of Shandong Province,China(Grant No.2022SFGC0102).
文摘Genomic rearrangements play a crucial role in shaping biological phenotypic diversity and driving species evolution.Synthetic chromosome rearrangement and modification by LoxP-mediated evolution(SCRaMbLE)has been applied to explore large-scale genomic rearrangements,yet it has been observed that these rearrangements occur exclusively in genomic regions containing loxPsym sites.Here,we found that SCRaMbLE of synthetic yeast harboring synthetic chromosome V and X can generate a variety of synthetic segment insertions into wild-type chromosomes,ranging from 1 to 300 kb.Furthermore,it was revealed that the novel insertions impacted the transcriptional level of neighboring regions and affected the production of exemplar pathway of zeaxanthin.Collectively,our results improve the understanding of the ability of SCRaMbLE to generate complex structural variations in nonsynthetic regions and provide a potential model to explore genomic transposable events.
基金the National Natural Science Foundation of China (Grant No. 10771084)the Education Department Foundation of Jilin Province (Grant No. 200568)the Foundations of Dalian Nationalities University and Jilin Normal University
文摘Consider the subshifts induced by constant-length primitive substitutions on two symbols. By investigating the equivalent version for the existence of Li-Yorke scrambled sets and by proving the non-existence of Schweizer-Smítal scrambled sets, we completely reveal for this class of subshifts the chaotic behaviors possibly occurring in the sense of Li-Yorke and Schweizer-Smítal.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金supported by the National Natural Science Foundation of China (21621004, 21750001 and 21676192)Young Elite Scientist Sponsorship Program by CAST (YESS) (2018QNRC001)
文摘Genetic variation drives phenotypic evolution within populations. Genetic variation can be divided into different forms according to the size of genomic changes. However, study of large-scale genomic variation such as structural variation and aneuploidy is still limited and mainly based on the static, predetermined feature of individual genomes. Here, using SCRaMbLE,different levels of loss of heterozygosity(LOH) events including short-range LOH, long-range LOH and whole chromosome LOH were detected in evolved strains. By contrast, using rapid adaptive evolution, aneuploidy was detected in the adaptive strains. It was further found that deletion of gene GLN3, long-range LOH in the left arm of synthetic chromosome Ⅹ, whole chromosome LOH of synthetic chromosome Ⅹ, and duplication of chromosome Ⅷ(trisomy) lead to increased rapamycin resistance in synthetic yeast. Comparative analysis of genome stability of evolved strains indicates that the aneuploid strain has a higher frequency of degeneration than the SCRaMbLEd strain. These findings enrich our understanding of genetic mechanism of rapamycin resistance in yeast, and provide valuable insights into yeast genome architecture and function.
文摘1 A problem or scrambled setCHAOTIC behavior is a manifestation of complexity of nonlinear dynamical systems. Since theobjects, methods, aims, or emphases of study are distinct, there are some variant definitionsof chaos given by different authors, or given by the same author in his different works. Thefollowing definition mainly stems from Li and Yorke.
基金supported by the National Key R&D Program of China(2021YFC2102500)National Natural Science Foundation of China(31971351).
文摘Varied environmental stress can affect cell growth and activity of the cellular catalyst.Traditional path of adaptive evolution generally takes a long time to achieve a tolerance phenotype,meanwhile,it is a challenge to dissect the underlying genetic mechanism.Here,using SCRaMbLE,a genome scale tool to generate random structural variations,a total of 222 evolved yeast strains with enhanced environmental tolerances were obtained in haploid or diploid yeasts containing six synthetic chromosomes.Whole genome sequencing of the evolved strains revealed that these strains generated different structural variants.Notably,by phenotypic-genotypic analysis of the SCRaMbLEd strains,we find that a deletion of gene YFR009W(GCN20)can improve salt tolerance of Saccharomyces cerevisiae,and a deletion of gene YER056C can improve 5-flucytosine tolerance of Saccharomyces cerevisiae.This study shows applications of SCRaMbLE to accelerate phenotypic evolution for varied environmental stress and to explore relationships between structural variations and evolved phenotypes.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202208)the Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQLZX0139)the National Natural Science Foundation of China(Grant No.61772295).
文摘With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.
基金the National Natural Science Foundation of China(No.11803036)Climbing Program of Changchun University(No.ZKP202114).
文摘Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.
文摘The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.
文摘In the present paper,we propose an efficient scrambled estimator of population mean of quantitative sensitive study variable,using general linear transformation of nonsensitive auxiliary variable.Efficiency comparisons with the existing estimators have been carried out both theoretically and numerically.It has been found that our optimal scrambled estimator is always more efficient than most of the existing scrambled estimators and also it is more efficient than few other scrambled estimators under some conditions.
文摘Geopolitical as well as economic concerns underlie the worldwide rush to establish petroleum exchanges New oil exchange programs have recently been mushrooming around the world. The Shanghai Petroleum Exchange, which uses renminbi in its transactions, kicked off operations on August 18. In May,
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62105004in part by the Open Fund of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine under the Grant(SKLMRDPC19KF10).
文摘In today’s information society,image encryption technology is crucial to protecting Internet security.However,traditional image encryption algorithms have problems such as insufficient chaotic characteristics,insufficient randomness of keys,and insecure Ribonucleic Acid(RNA)encoding.To address these issues,a chaos-RNA encryption scheme that combines chaotic maps and RNA encoding was proposed in this research.The initial values and parameters of the chaotic system are first generated using the Secure Hash Algorithm 384(SHA-384)function and the plaintext image.Next,the Lühyperchaotic system sequence was introduced to change the image’s pixel values to realize block scrambling,and further disturbance is achieved through spiral index sequence to enhance encryption effectiveness.Subsequently,to obtain the final encrypted image,the diffusion is accomplished through different RNA encoding rules and operation rules corresponding to the chaotic sequence generated by an improved one-dimensional chaotic map(1DCM).Here innovatively propose four new RNA operation rules,increasing the difficulty of decryption.Simulation results demonstrate that the normalized pixel change rate(NPCR)and the unified average changed intensity(UACI)values of the tested encrypted images were 99.61%and 33.46%,respectively.The average ciphertext entropy value in the Red Green Blue(RGB)channels were 7.9986,7.991,and 7.991.Furthermore,this algorithm exhibits a low correlation coefficient and enhanced robustness.This encryption method effectively improves the security and reliability of image encryption compared to other similar techniques.
文摘As the amount of medical images transmitted over networks and kept on online servers continues to rise,the need to protect those images digitally is becoming increasingly important.However,due to the massive amounts of multimedia and medical pictures being exchanged,low computational complexity techniques have been developed.Most commonly used algorithms offer very little security and require a great deal of communication,all of which add to the high processing costs associated with using them.First,a deep learning classifier is used to classify records according to the degree of concealment they require.Medical images that aren’t needed can be saved by using this method,which cuts down on security costs.Encryption is one of the most effective methods for protecting medical images after this step.Confusion and dispersion are two fundamental encryption processes.A new encryption algorithm for very sensitive data is developed in this study.Picture splitting with image blocks is nowdeveloped by using Zigzag patterns,rotation of the image blocks,and random permutation for scrambling the blocks.After that,this research suggests a Region of Interest(ROI)technique based on selective picture encryption.For the first step,we use an active contour picture segmentation to separate the ROI from the Region of Background(ROB).Permutation and diffusion are then carried out using a Hilbert curve and a Skew Tent map.Once all of the blocks have been encrypted,they are combined to create encrypted images.The investigational analysis is carried out to test the competence of the projected ideal with existing techniques.
文摘In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission secrecy,compressive encryption method is proposed to accomplish compression and encryption based on fractional order hyper chaotic system that incorporates Compressive Sensing(CS),pixel level,bit level scrambling and nucleotide Sequences operations.The measurement matrix generates by the fractional order hyper chaotic system strengthens the efficiency of the encryption process.To avoid plain text attack,the CS measurement is scrambled to its pixel level,bit level scrambling decreases the similarity between the adjacent measurements and the nucleotide sequence operations are done on the scrambled bits,increasing the encryption.Two stages are comprised in the reconstruction technique,the first stage uses the intra-frame similarity and offers robust preliminary retrieval for each frame,and the second stage iteratively improves the efficiency of reconstruction by integrating inter frame Multi Hypothesis(MH)estimation and weighted residual sparsity modeling.In each iteration,the residual coefficient weights are modified using a mathematical approach based on the MH predictions,and the Split Bregman iteration algorithm is defined to resolve weighted l1 regularization.Experimental findings show that the proposed algorithm provides good compression of video coupled with an efficient encryption method that is resistant to multiple attacks.