Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.Ho...Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.However, its large-scale application in printed microelectronics is still limited by screen printing functional ink. In this review, we summarize the recent advances of ink formation, typical scalable applications, and challenging perspectives of screen printing for emerging printed microelectronics. Firstly, we introduce the major mechanism of screen printing and the formation of different organic-and aqueous-based inks by various solvents and binders. Next, we review the most widely used applications of screen printing technique in micro-batteries, micro-supercapacitors and micro-sensors, demonstrative of wide applicability.Finally, the perspectives and future challenges in the sight of screen printing are briefly discussed.展开更多
Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs wer...Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs were added to an aqueous additive solution for synthesizing a conductive ink,which was used to prepare two types of printing electrodes via screen printing.The first type included two flexible printed electrodes(FPEs):an FPE on a polyethylene terephthalate(PET)film and an FPE on paper.The second one was a polydimethylsiloxane(PDMS)-embedded FPE.The PETbased FPE exhibited high electrochemical stability when its sheet resistance was 0.38Ω/sq for a 50%(w/w)content of FSSPs in the prepared conductive ink.Moreover,the embedded FPE demonstrated excellent mechanical properties and high chemical stability.In addition,the embedded structure was endowed with stretchability,which is important for different devices,such as flexible biomedical sensors and flexible electronics.展开更多
Facile preparation of additive-free inks with both high viscosity and high conductivity is critical for scalable screen printing of wireless electronics,yet very challenging.MXene materials exhibit excellent conductiv...Facile preparation of additive-free inks with both high viscosity and high conductivity is critical for scalable screen printing of wireless electronics,yet very challenging.MXene materials exhibit excellent conductivity and hydrophilicity,showing great potential in the field of additive-free inks for screen printing.Here,we demonstrate the synthesis of additive-free two-dimensional(2D)titanium carbide MXene inks,and realize screen-printed MXene wireless electronics for the first time.The viscosity of MXene ink is solely regulated by tuning the size of MXene nanosheet without any additives,hence rendering the printed MXene film extremely high conductivity of 1.67×10^(5) S/m and fine printing resolution down to 0.05 mm on various flexible substrates.Moreover,radio frequency identification(RFID)tags fabricated using the additive-free MXene ink via screen printing exhibit stable antenna reading performance and superb flexibility.This article,thus offers a new route for the efficient,low-cost and pollution-free manufacture of printable electronics based on additive-free MXene inks.展开更多
This work reports on the development of pastes containing Ti,TiC,Si,and C elementary powders for in situ synthesis of Ti3SiC2 via screen printing.Four paste compositions were manufactured using two powder mixtures(Ti/...This work reports on the development of pastes containing Ti,TiC,Si,and C elementary powders for in situ synthesis of Ti3SiC2 via screen printing.Four paste compositions were manufactured using two powder mixtures(Ti/Si/C and Ti/TiC/Si/C)with different stoichiometry.The pastes were screen printed onto Al2O3 substrates and sintered at 1400℃in argon varying the dwell time from 1 to 5 h.The printed pastes containing TiC and excess of Si exhibited the lowest surface roughness and after 5 h sintering comprised of Ti3SiC2 as the majority phase.The electrical conductivity of this sample was found to range from 4.63×10^(4)to 2.57×10^(5)S·m^(-1)in a temperature range of 25-400℃.展开更多
Flexible electrode films play critical and fundamental roles in the successful development of flexible electronic devices. In this study, carbon nanotubes(CNTs) were implanted into silver(Ag) ink to enhance the el...Flexible electrode films play critical and fundamental roles in the successful development of flexible electronic devices. In this study, carbon nanotubes(CNTs) were implanted into silver(Ag) ink to enhance the electrical conductivity and the reliability of the printed Ag electrode films. The fabricated carbon nanotubes-enriched silver(Ag-CNTs) electrode films were printed on the polyimide substrates by a facile screen printing method and sintered at a relatively low temperature. The resistivity of Ag-CNTs films was decreased by 62.27% compared with the pure Ag film. Additionally, the Ag-CNTs films exhibited excellent flexibility under a bending radius of 4 mm(strain ε = 2.09%) over 1000 cycles. Furthermore, the Ag-CNTs film displayed unchangeable electrical conductivity together with a strong adhesion after an accelerated aging test with 500 thermal shock cycles. These improvements were attributed to the AgCNTs interconnected network structure, which can provide electronic transmission channels and prevent cracks from initiating and propagating.展开更多
Li ions affect the upconversion efficiency by changing the local crystal field of the luminescent center. Herein, in order to improve the upconversion efficiency of NaYF4:Yb3+/Eu3+, a series of NaYF4:Yb3+/Eu3+micro-pa...Li ions affect the upconversion efficiency by changing the local crystal field of the luminescent center. Herein, in order to improve the upconversion efficiency of NaYF4:Yb3+/Eu3+, a series of NaYF4:Yb3+/Eu3+micro-particles with different Li+doping concentrations were synthesized by the hydrothermal synthesis method, respectively.Firstly, the structure and morphology of NaYF4:Yb3+/Eu3+upconversion micro-particles(UCMPs) with different doping concentrations were analyzed by X-ray diffraction and a scanning electron microscope(SEM). SEM results show that the UCMPs are not only highly crystallized, but also have hexagons with different Li+concentrations of NaYF4:Yb3+/Eu3+. X-ray diffraction shows that the crystal field around Eu3+changes with the increase of Li+concentration. Then, the fluorescence spectrum of NaYF4:Yb3+/Eu3+was studied under the irradiation of a 980 nm laser. The results show that the fluorescence intensity of NaYF4:Yb3+/Eu3+with2% Li+is the strongest, which is twice the intensity of NaYF4:Yb3+/Eu3+without Li+. Finally, the fluorescence imaging analysis of NaYF4:Yb3+/Eu3+with 2% Li+concentration was carried out. The UCMPs are used to screen printing to evaluate the imaging effect on different sample surfaces. The results show NaYF4:Yb3+/Eu3+(with 2% Li+) has great application prospects in anti-counterfeiting recognition.展开更多
Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Parti...Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Particularly,we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon.The deposition of the scaftold is entirely based on screen printing process,which provides a promising prospect for low-cost photovoltaics.However,the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films.Here,we tune the concentration of the pastes and the printing parameters for coating TiO?films,and successfully print TiO2 films with the thickness of 500-550 nm.The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes,the printing speed and pressure,and the temperature has been investigated.Besides,the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied.This work will significantly benefit the further development of printable mesoscopic PSCs.展开更多
Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated ...Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated using the screen printing technology for the determination of phosphate concentration in the aqueous solution. The disposable sensor consists of a fully integrated cobalt (Co) electrode, which is a layer of carbon conductive ink (C) physically doped with Co powder, and Ag/AgCI reference electrode. The SEM images show that the morphology of the Co electrode changes after exposure to the phosphate solution, indicating that the expendable reaction exists during the measurement. At the Co/C ratio of 1:99, the cobalt-based phosphate sensor shows phosphate-selective potential response in the range of 10-4 to 10-1 mol/L, yielding a detection limit of lxl0-5 mol/L and a slope of over 30 mV/decade in acidic solution (pH 4.5) for HzPO4-. The proposed screen-printed sensor also ex- hibited significant reproducibility with a small repeated sensing deviation (i.e., relative standard deviation (R.S.D.) of 0.5%) on a single sensor and a small electrode-to-electrode deviation (i.e., R.S.D. 〈 3.2%). The recovery study of HzPO4- in real wastewater samples gave values from 95.4% to 101.8%, confirming its application potential in the measurement of phosphate in real samples. Apart from its high selectivity, sensitivity, and stability comparable with a conventional bulk Co-wire electrode, the proposed phosphate sensor still yields many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices such as flow injection analysis.展开更多
CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sint...CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature.The processing included the modi fication and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder,the preparation of uniform pastes,and the selection of proper annealing temperature for composite thick films.Transmission electron microscopic pictures(TEM)indicated the submicron meter of particles size for both CFO and PZT particles.After annealing at 900℃ for 1 h in air,tape test con firmed the quality of multiferroic thick films as well as pure CFO and PZT films.X-ray diffraction(XRD)showed a coexistence of CFO and PZT phases;furthermore,a smooth surface was observed through scanning electron microscopic(SEM)pictures along with the sharp cross-sectional picture,indicative of 100m of film thickness.Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature.Compared with the reported CFO/PZT multiferrroic thin films,the present ferromagnetic property was closing to that of the chemical solgel synthesized film and even that from the physical pulsed laser deposition technique.However,the ferroelectric property showed a degenerated behavior,possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.展开更多
’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, ...’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, and Hong Kong, Taiwan districts attended the Exhibition. The booth area was more than 5000 m^2.展开更多
Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnos...Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.展开更多
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr...Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.展开更多
In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: sem...In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: semi-automatic and automatic. Air samples were collected and analyzed in situ for 4 times, once per 2 hours, during working time of 8 hours. Analysis of the experimental data showed that ambient ozone concentrations slowly increases with the increasing of TVOCs concentration and intensive use of UV lamps during automatic screen printing process. Therefore, the detected concentration levels of ozone and VOCs were compared with the Occupational Safety and Health Administration (OSHA) and Serbian Regulation. Comparison of the two mentioned standard regulations, the ozone concentrations in indoor printing air were from 0.83 to 8.1 and 2.4 to 16.2 times higher in the relation to the prescribed PEL and maximum allowed concentration (MAC) values, respectively, while the concentrations of particular VOCs were much below the PEL prescribed by the OSHA.展开更多
Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well...Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.展开更多
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films...A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.展开更多
A novel disposable cholesterol biosensor based on electrochemical process is developed adopting screen printing technology.The system consists of a graphite reference electrode and a working electrode.The mixture of c...A novel disposable cholesterol biosensor based on electrochemical process is developed adopting screen printing technology.The system consists of a graphite reference electrode and a working electrode.The mixture of cholesterol oxidase and K_4Fe (CN)_6 is printed on the electrodes.The biosensor determines total cholesterol content through indirect determination of free cholesterol in the whole human blood.When 0.3V voltage is applied to the electrodes,the range of detection is from 250 mg/L to 2000 mg/L,with the correlation coefficient of 0.9967.The total detective duration is less than 200s,and the sample volume is only 4μL.展开更多
Based on simple screen printing technique,the parallel grid electrode group was developed. One grid electrode included the left and the right branch electrodes,which were formed with the solidified silver slurry on gr...Based on simple screen printing technique,the parallel grid electrode group was developed. One grid electrode included the left and the right branch electrodes,which were formed with the solidified silver slurry on grid substrate. Under one anode pixel,the left and the right branch electrodes would control respectively the electron emission of two independent carbon nanotube (CNT) field emitters on the same cathode electrode. With the parallel grid electrode group, the capacitance effect between grid-cathode electrodes would be reduced due to the decreased grid electrode fabrication area. And the service life of field emission display (FED) could be prolonged owing to the existence of spare branch electrode. Using CNT as field emitter,the FED with parallel grid electrode group was fabricated,which possessed better grid control performance, high luminescence image brightness, and low fabrication cost. The turn-on electric-field was 2. 13 V /mm and the maximum field emission current had reached 1 506. 2 mA.展开更多
Printing techniques hold great potential in the manufacture of electronics such as sensors,micro-supercapacitors,and flexible electronics.However,developing large-scale functional conductive inks with appropriate rheo...Printing techniques hold great potential in the manufacture of electronics such as sensors,micro-supercapacitors,and flexible electronics.However,developing large-scale functional conductive inks with appropriate rheological properties and active components still remains a challenge.Herein,through optimizing the formulations of ink,iron single sites supported N-doped carbon black(Fe_(1)-NC)inks can serve as both conductive electrodes and high-reactive catalysts to realize convenient glucose detection,which pronouncedly reduces the dosage of enzyme and simplifies the sensors preparation.In detail,utilizing in-situ pyrolysis method,Fe_(1)-NC single-atom catalysts(SACs)are prepared in bulk(dekagram-level).The batched Fe_(1)-NC SACs materials can be uniformly mixed with modulated ink to realize the screen printing with high resolution and uniformity.Also,the whole scalable preparation and ink-functional process can be extended to various metals(including Co,Ni,Cu,and Mn).The introduction of highly active Fe_(1)-NC sites reduces the amount of enzyme used in glucose detection by at least 50%,contributing to the cost reduction of sensors.The strategy in harnessing the SACs onto the carbon inks thus provides a broad prospect for the low-cost and large-scale printing of sensitive sensing devices.展开更多
基金financially supported by the National Key R@D Program of China (2016YFB0100100,2016YFA0200200)the National Natural Science Foundation of China (22125903,51872283,22075279,21805273,22005297,22005298)+7 种基金the Liao Ning Revitalization Talents Program (XLYC1807153)the CentralGovernment of Liaoning Province Guides The Funds for Local Science and Technology Development (2021JH6/10500112)the Dalian Innovation Support Plan for High Level Talents(2019RT09)the Dalian National Laboratory For Clean Energy(DNL)the CASDNL Cooperation Fund,CAS (DNL201912,DNL201915,DNL202016,DNL202019)DICP (DICP ZZBS201708,DICP ZZBS201802,DICP I2020032)the China Postdoctoral Science Foundation (2019M661141,2020M680995)。
文摘Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.However, its large-scale application in printed microelectronics is still limited by screen printing functional ink. In this review, we summarize the recent advances of ink formation, typical scalable applications, and challenging perspectives of screen printing for emerging printed microelectronics. Firstly, we introduce the major mechanism of screen printing and the formation of different organic-and aqueous-based inks by various solvents and binders. Next, we review the most widely used applications of screen printing technique in micro-batteries, micro-supercapacitors and micro-sensors, demonstrative of wide applicability.Finally, the perspectives and future challenges in the sight of screen printing are briefly discussed.
基金This work was supported by the International Joint Research Center for Biomass Chemistry and Materials,Shaanxi International Science and Technology Cooperation Base(2018GHJD-19)the Shaanxi Key Industry Innovation Chain Projects(2020ZDLGY11-03)+2 种基金the Science and Technology Plan of Weiyang District of Xi'an(201910)the Scientific Research Plan Projects of Shaanxi Education Department(19JK0131)The project was also supported by the Foundation of Key Laboratory of Pulp and Paper Science and Technology of the Ministry of Education/Shandong Province of China(KF201814).
文摘Fractal-structured silver particles(FSSPs)are conductive materials with a micron-scale trunk and nanoscale branches,and are characterized with high electrical conductivity and high connectivity.In this study,FSSPs were added to an aqueous additive solution for synthesizing a conductive ink,which was used to prepare two types of printing electrodes via screen printing.The first type included two flexible printed electrodes(FPEs):an FPE on a polyethylene terephthalate(PET)film and an FPE on paper.The second one was a polydimethylsiloxane(PDMS)-embedded FPE.The PETbased FPE exhibited high electrochemical stability when its sheet resistance was 0.38Ω/sq for a 50%(w/w)content of FSSPs in the prepared conductive ink.Moreover,the embedded FPE demonstrated excellent mechanical properties and high chemical stability.In addition,the embedded structure was endowed with stretchability,which is important for different devices,such as flexible biomedical sensors and flexible electronics.
基金supported by the National Natural Science Foundation of China(No.22279097)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.520LH054)the Fundamental Research Funds for the Central Universities(WUT:2021IVA66).
文摘Facile preparation of additive-free inks with both high viscosity and high conductivity is critical for scalable screen printing of wireless electronics,yet very challenging.MXene materials exhibit excellent conductivity and hydrophilicity,showing great potential in the field of additive-free inks for screen printing.Here,we demonstrate the synthesis of additive-free two-dimensional(2D)titanium carbide MXene inks,and realize screen-printed MXene wireless electronics for the first time.The viscosity of MXene ink is solely regulated by tuning the size of MXene nanosheet without any additives,hence rendering the printed MXene film extremely high conductivity of 1.67×10^(5) S/m and fine printing resolution down to 0.05 mm on various flexible substrates.Moreover,radio frequency identification(RFID)tags fabricated using the additive-free MXene ink via screen printing exhibit stable antenna reading performance and superb flexibility.This article,thus offers a new route for the efficient,low-cost and pollution-free manufacture of printable electronics based on additive-free MXene inks.
基金The authors thank the Central Laboratory of Electronic Microscopy(LCME-UFSC)and the multiuser facility LDRX at UFSC.This study was financed in part by the Coordena^ao de Aperfei^oamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001,under Project number 88881.310728/2018-01 and by the National Council for Scientific and Technological Development(CNPq-Brazil),Project number PVE-CNPq-407102/2013-2.
文摘This work reports on the development of pastes containing Ti,TiC,Si,and C elementary powders for in situ synthesis of Ti3SiC2 via screen printing.Four paste compositions were manufactured using two powder mixtures(Ti/Si/C and Ti/TiC/Si/C)with different stoichiometry.The pastes were screen printed onto Al2O3 substrates and sintered at 1400℃in argon varying the dwell time from 1 to 5 h.The printed pastes containing TiC and excess of Si exhibited the lowest surface roughness and after 5 h sintering comprised of Ti3SiC2 as the majority phase.The electrical conductivity of this sample was found to range from 4.63×10^(4)to 2.57×10^(5)S·m^(-1)in a temperature range of 25-400℃.
基金supported financially by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1601213)the National Natural Science Foundation of China (Grant No. 51601005)the Fundamental Research Funds for the Central Universities.
文摘Flexible electrode films play critical and fundamental roles in the successful development of flexible electronic devices. In this study, carbon nanotubes(CNTs) were implanted into silver(Ag) ink to enhance the electrical conductivity and the reliability of the printed Ag electrode films. The fabricated carbon nanotubes-enriched silver(Ag-CNTs) electrode films were printed on the polyimide substrates by a facile screen printing method and sintered at a relatively low temperature. The resistivity of Ag-CNTs films was decreased by 62.27% compared with the pure Ag film. Additionally, the Ag-CNTs films exhibited excellent flexibility under a bending radius of 4 mm(strain ε = 2.09%) over 1000 cycles. Furthermore, the Ag-CNTs film displayed unchangeable electrical conductivity together with a strong adhesion after an accelerated aging test with 500 thermal shock cycles. These improvements were attributed to the AgCNTs interconnected network structure, which can provide electronic transmission channels and prevent cracks from initiating and propagating.
基金supported by the National Natural Science Foundation of China (No. 61805198)the Special Research Projects of Department of Education of Shaanxi Province (No. 18JK0707)。
文摘Li ions affect the upconversion efficiency by changing the local crystal field of the luminescent center. Herein, in order to improve the upconversion efficiency of NaYF4:Yb3+/Eu3+, a series of NaYF4:Yb3+/Eu3+micro-particles with different Li+doping concentrations were synthesized by the hydrothermal synthesis method, respectively.Firstly, the structure and morphology of NaYF4:Yb3+/Eu3+upconversion micro-particles(UCMPs) with different doping concentrations were analyzed by X-ray diffraction and a scanning electron microscope(SEM). SEM results show that the UCMPs are not only highly crystallized, but also have hexagons with different Li+concentrations of NaYF4:Yb3+/Eu3+. X-ray diffraction shows that the crystal field around Eu3+changes with the increase of Li+concentration. Then, the fluorescence spectrum of NaYF4:Yb3+/Eu3+was studied under the irradiation of a 980 nm laser. The results show that the fluorescence intensity of NaYF4:Yb3+/Eu3+with2% Li+is the strongest, which is twice the intensity of NaYF4:Yb3+/Eu3+without Li+. Finally, the fluorescence imaging analysis of NaYF4:Yb3+/Eu3+with 2% Li+concentration was carried out. The UCMPs are used to screen printing to evaluate the imaging effect on different sample surfaces. The results show NaYF4:Yb3+/Eu3+(with 2% Li+) has great application prospects in anti-counterfeiting recognition.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.21702069,91433203 and 61474049)the Ministry of Science and Technology of China(863)(No.2015AA034601)+3 种基金the Fundamental Research Funds for the Central Universities,the Science and Technology Department ofHubei Province(No.2017AAA190)the 111 Project(No.B07038)the China Postdoctoral Science Foundation(No.2017M612452)and the Double first-class research funding of China-EU Institute for Clean and Renewable Energy(Nos.ICARE-RP-2018-SOLAR-001 and ICARE-RP-2018-SOLAR-002).
文摘Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dyesensitized solar cells(DSSCs)and perovskite solar cells(PSCs).Particularly,we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon.The deposition of the scaftold is entirely based on screen printing process,which provides a promising prospect for low-cost photovoltaics.However,the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films.Here,we tune the concentration of the pastes and the printing parameters for coating TiO?films,and successfully print TiO2 films with the thickness of 500-550 nm.The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes,the printing speed and pressure,and the temperature has been investigated.Besides,the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied.This work will significantly benefit the further development of printable mesoscopic PSCs.
基金supported by the Major Scientific Equipment Development Project of China(2012YQ030111)the Beijing Natural Science Foundation(8132032)
文摘Screen printing is a promising technology because of its simplicity, low-cost, high reproducibility, and efficiency in large-scale production. In this work, a cobalt-based phosphate sensor was successfully fabricated using the screen printing technology for the determination of phosphate concentration in the aqueous solution. The disposable sensor consists of a fully integrated cobalt (Co) electrode, which is a layer of carbon conductive ink (C) physically doped with Co powder, and Ag/AgCI reference electrode. The SEM images show that the morphology of the Co electrode changes after exposure to the phosphate solution, indicating that the expendable reaction exists during the measurement. At the Co/C ratio of 1:99, the cobalt-based phosphate sensor shows phosphate-selective potential response in the range of 10-4 to 10-1 mol/L, yielding a detection limit of lxl0-5 mol/L and a slope of over 30 mV/decade in acidic solution (pH 4.5) for HzPO4-. The proposed screen-printed sensor also ex- hibited significant reproducibility with a small repeated sensing deviation (i.e., relative standard deviation (R.S.D.) of 0.5%) on a single sensor and a small electrode-to-electrode deviation (i.e., R.S.D. 〈 3.2%). The recovery study of HzPO4- in real wastewater samples gave values from 95.4% to 101.8%, confirming its application potential in the measurement of phosphate in real samples. Apart from its high selectivity, sensitivity, and stability comparable with a conventional bulk Co-wire electrode, the proposed phosphate sensor still yields many other advantages, such as low price, compactness, ease of use, and the possibility of integration with other analytical devices such as flow injection analysis.
基金This work was supported by the tier-2 research grant of ARC 04/06 funded by Ministry of Education,Singapore.
文摘CoFe_(2)O_(4)/Pb(Zr_(0.53)Ti_(0.47))TO_(3)(abbreviated as CFO/PZT)multiferroic composite thick films were successfully fabricated on alumina substrate with gold bottom electrode by screen printing method at a low-sintering temperature.The processing included the modi fication and dispersion of ferromagnetic CFO powder and ferroelectric PZT powder,the preparation of uniform pastes,and the selection of proper annealing temperature for composite thick films.Transmission electron microscopic pictures(TEM)indicated the submicron meter of particles size for both CFO and PZT particles.After annealing at 900℃ for 1 h in air,tape test con firmed the quality of multiferroic thick films as well as pure CFO and PZT films.X-ray diffraction(XRD)showed a coexistence of CFO and PZT phases;furthermore,a smooth surface was observed through scanning electron microscopic(SEM)pictures along with the sharp cross-sectional picture,indicative of 100m of film thickness.Ferromagnetic and ferroelectric properties were observed in CFO/PZT films simultaneously at room temperature.Compared with the reported CFO/PZT multiferrroic thin films,the present ferromagnetic property was closing to that of the chemical solgel synthesized film and even that from the physical pulsed laser deposition technique.However,the ferroelectric property showed a degenerated behavior,possible reasons for this was discussed and further optimization was also proposed for the potential multifunctional application.
文摘’97 Wuhan International Screen Special Printing Technology Exhibition was held from May 21—24, 1997 in Wuhan city,the capital of Hubei Province. 120 famous exhibitors from China, USA, Canada, Holland, Japan, Korea, and Hong Kong, Taiwan districts attended the Exhibition. The booth area was more than 5000 m^2.
基金supported by the National Natural Science Foundation of China(52303051,52202108,52003002)Anhui Provincial Natural Science Foundation(2308085ME146,2008085QE213)+3 种基金Educational Commission of Anhui Province of China(2022AH040137)Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province(ZD04)Opening Fund of China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel,Soochow University(SDHY2227)research funding from Anhui Polytechnic University(2020YQQ002,Xjky2022070,FFBK202218,FFBK202363,FFBK202364,2020ffky01).
文摘Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.
基金the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(No.2021R1A2C1009926)“Basic project(referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research Institutes)”+3 种基金supported by the KOREA RESEARCH INSTITUTE of CHEMICAL TECHNOLOGY(KRICT)(SS2042-10)Basic research project(Project:21-3212-1)of the Korea institute of GeoscienceMineral resources funded by the Ministry of Science and ICT of Koreaby Nanomedical Devices Development Project of NNFC in 2021.
文摘Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.
文摘In this study, indoor air quality (IAQ) assessments were carried out in a screen printing facility. The air sampling was conducted in press department, including two different types of screen printing machines: semi-automatic and automatic. Air samples were collected and analyzed in situ for 4 times, once per 2 hours, during working time of 8 hours. Analysis of the experimental data showed that ambient ozone concentrations slowly increases with the increasing of TVOCs concentration and intensive use of UV lamps during automatic screen printing process. Therefore, the detected concentration levels of ozone and VOCs were compared with the Occupational Safety and Health Administration (OSHA) and Serbian Regulation. Comparison of the two mentioned standard regulations, the ozone concentrations in indoor printing air were from 0.83 to 8.1 and 2.4 to 16.2 times higher in the relation to the prescribed PEL and maximum allowed concentration (MAC) values, respectively, while the concentrations of particular VOCs were much below the PEL prescribed by the OSHA.
基金National Natural Science Foundation of China(Nos.51405079)China Postdoctoral Science Foundation of China(No.2015M570307)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Jiangsu Planned Projects for Postdoctoral Research Funds,China
文摘Compared with bar code and quick response( QR) code in the storage and retailing management of textiles, the ultra-high frequency( UHF) radio frequency identification( RFID) tags have high information capacity as well as reliability in complex environmental conditions. In this study,the UHF RFID tags with perfect integration with textiles are assembled with screen-printed antenna on woven water-mark nylon fabric and Alien UHF integrated circuit( IC), and their reading performance under various washing and bending conditions is evaluated by an RFID reader. The results show that the tags after fifty bending( both arch and sink) cycles of screen-printed antenna still have reading distance more than 5.5 m,and an average reading distance is over 4.0 m after five washing cycles. The experimental results demonstrate that the tag antenna on the water-mark fabric can be manufactured by the screen-printing technology,and a coating process on this fabric facilitates the reading performance and the resistance against complex mechanical impact.
文摘A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.
文摘A novel disposable cholesterol biosensor based on electrochemical process is developed adopting screen printing technology.The system consists of a graphite reference electrode and a working electrode.The mixture of cholesterol oxidase and K_4Fe (CN)_6 is printed on the electrodes.The biosensor determines total cholesterol content through indirect determination of free cholesterol in the whole human blood.When 0.3V voltage is applied to the electrodes,the range of detection is from 250 mg/L to 2000 mg/L,with the correlation coefficient of 0.9967.The total detective duration is less than 200s,and the sample volume is only 4μL.
基金National Natural Science Foundations of China(No.60976058,No.61274078)Natural Science Research Project of Henan Province Education Department,China(No.2009B510019)
文摘Based on simple screen printing technique,the parallel grid electrode group was developed. One grid electrode included the left and the right branch electrodes,which were formed with the solidified silver slurry on grid substrate. Under one anode pixel,the left and the right branch electrodes would control respectively the electron emission of two independent carbon nanotube (CNT) field emitters on the same cathode electrode. With the parallel grid electrode group, the capacitance effect between grid-cathode electrodes would be reduced due to the decreased grid electrode fabrication area. And the service life of field emission display (FED) could be prolonged owing to the existence of spare branch electrode. Using CNT as field emitter,the FED with parallel grid electrode group was fabricated,which possessed better grid control performance, high luminescence image brightness, and low fabrication cost. The turn-on electric-field was 2. 13 V /mm and the maximum field emission current had reached 1 506. 2 mA.
基金supported by the Ministry of Science and Technology of China(No.2021YFA1500404)the National Natural Science Foundation of China(Nos.92261105 and 22221003)+1 种基金USTC Research Funds of the Double First-Class Initiative(No.YD9990002022)the Shanghai Sailing Program(No.22YF1413400).
文摘Printing techniques hold great potential in the manufacture of electronics such as sensors,micro-supercapacitors,and flexible electronics.However,developing large-scale functional conductive inks with appropriate rheological properties and active components still remains a challenge.Herein,through optimizing the formulations of ink,iron single sites supported N-doped carbon black(Fe_(1)-NC)inks can serve as both conductive electrodes and high-reactive catalysts to realize convenient glucose detection,which pronouncedly reduces the dosage of enzyme and simplifies the sensors preparation.In detail,utilizing in-situ pyrolysis method,Fe_(1)-NC single-atom catalysts(SACs)are prepared in bulk(dekagram-level).The batched Fe_(1)-NC SACs materials can be uniformly mixed with modulated ink to realize the screen printing with high resolution and uniformity.Also,the whole scalable preparation and ink-functional process can be extended to various metals(including Co,Ni,Cu,and Mn).The introduction of highly active Fe_(1)-NC sites reduces the amount of enzyme used in glucose detection by at least 50%,contributing to the cost reduction of sensors.The strategy in harnessing the SACs onto the carbon inks thus provides a broad prospect for the low-cost and large-scale printing of sensitive sensing devices.