期刊文献+
共找到3,631篇文章
< 1 2 182 >
每页显示 20 50 100
Aptasensor Based on Screen-Printed Carbon Electrodes Modified with CS/AuNPs for Sensitive Detection of Okadaic Acid in Shellfish 被引量:2
1
作者 Ni Zeng Xinyi Wang +4 位作者 Yiyang Dong Yan Yang Yingai Yin Lianhui Zhao Xu Wang 《Journal of Analysis and Testing》 EI CSCD 2023年第2期128-135,共8页
Okadaic acid(OA),a small molecule substance derived from shellfish,is one of the most widely distributed marine toxins with acute symptoms of vomiting and diarrhea after accidental ingestion.For this,there is an urgen... Okadaic acid(OA),a small molecule substance derived from shellfish,is one of the most widely distributed marine toxins with acute symptoms of vomiting and diarrhea after accidental ingestion.For this,there is an urgently need for sensitive and reliable methods to detect OA in real shellfish samples.In this study,a simple aptasensor based on screen-printed carbon electrode(SPCE)with modification of chitosan(CS)and gold nanoparticles(Au NPs)was designed for electrochemical determination of OA,and the electrode surface was modified with Au NPs by potential-sweeping electrodeposition,which greatly improved the electrochemical response.The entire detection and characterization process were carried out by cyclic voltammetry(CV)with a linear correlation in the range of 0.01-100 ng/m L and a limit of detection(LOD)of 6.7 pg/m L.Furthermore,recovery rates of 92.3-116%were obtained demonstrating excellent accuracy through the recovery trial of mussel and scallop samples. 展开更多
关键词 Okadaic acid APTASENSOR screen-printed carbon electrode CHITOSAN Gold nanoparticles Cyclic voltammetry
原文传递
Dimethylamine oxalate manipulating CsPbI_(3) perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells
2
作者 Wenran Wang Xin Peng +7 位作者 Jianxin Zhang Jiage Lin Rong Huang Guizhi Zhang Huishi Guo Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期221-228,I0006,共9页
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as... Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells. 展开更多
关键词 Solar cells PEROVSKITE CsPbI_(3) carbon electrodes OXALATE
下载PDF
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode
3
作者 FAN Ya-feng YI Zong-lin +6 位作者 ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期1015-1026,共12页
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me... Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors. 展开更多
关键词 High-frequency supercapacitors carbon electrodes Doped nitrogen species Adsorption energy DESCRIPTOR
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
4
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes carbon nanotubes Li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
A Glassy Carbon Electrode Modified with Cellulose Nanofibrils from Ammophila arenaria for the Sensitive Detection of L-Trytophan
5
作者 Sondes Bourigua Feriel Boussema +4 位作者 Zayneb Jebali Houcine Barhoumi Hatem Majdoub Abderrazak Maaref Nicole Jaffrezic-Renault 《Journal of Sensor Technology》 2024年第3期35-50,共16页
L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for... L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples. 展开更多
关键词 Nanofibrillated Cellulose CHITOSAN Chemically Modified Glassy carbon electrode Electrochemical Detection L-TRYPTOPHAN
下载PDF
Gold Nanoparticles/Thermochromic Composite Film on Screen-Printed Electrodes for Simultaneous Detection of Protein and Temperature
6
作者 Dorothy Araba Yakoba Agyapong Hanjia Jiang +2 位作者 Xingjia Ni Jingwen Wu Hongjuan Zeng 《Journal of Biomaterials and Nanobiotechnology》 2021年第2期7-19,共13页
In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The... In this study, gold nanoparticles and thermochromic composite films modified screen-printed carbon electrodes (TM-AuNPsSPCEs) were developed as a platform for the simultaneous detection of protein and temperature. The TM-AuNPs composited film had better sensitivity resulting from the gold nanoparticles amplification effect. A phase transition model analysis of TM-AuNPs films found that the TM-AuNPs films had three-phase transition intervals (<45℃, 45℃ to 80℃ and >80℃) which accommodated the temperature requirements for protein denaturation. When used to detect different concentrations of haemoglobin (Hb) solution, the TM-AuNPs modified SPCEs had a better sensitivity in detecting the different concentrations in comparison to TM and AuNP modified SPCEs which showed no clear sensitivity towards the different Hb concentrations. The dual detection and excellent sensitivity show a good application prospect for the study of the TM-AuNPs composite film. 展开更多
关键词 screen-printed carbon electrodes Gold Nanoparticles Thermochromic Material Simultaneous Detection of Proteins and Temperature
下载PDF
A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60 被引量:3
7
作者 Elsa Maria Materon Ademar Wong +2 位作者 Tayane Aguiar Freitas Ronaldo Censi Faria Osvaldo N.Oliveira Jr. 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第5期646-652,共7页
Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and minimizing the risk of bacteria resistance,which can be made with electrochemical sensors tailored with appropriate... Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and minimizing the risk of bacteria resistance,which can be made with electrochemical sensors tailored with appropriate materials.In this paper,we report on sensors made with screen-printed electrodes(SPE)coated with fullerene(C60),reduced graphene oxide(rGO)and Nafion(NF)(C60-rGO-NF/SPE)to determine the antibiotic metronidazole(MTZ).Under optimized conditions,the C60-rGO-NF/SPE sensor exhibited a linear response in square wave voltammetry for MTZ concentrations from 2.5×10^(-7) to 34×10^(-6) mol/L,with a detection limit of 2.1×10^(-7) mol/L.This sensor was also capable of detecting MTZ in serum and urine,with recovery between 94%and 100%,which are similar to those of the standard chromatographic method(HPLC-UV).Because the C60-rGO-NF/SPE sensor is amenable to mass production and allows for MTZ determination with simple principles of detection,it fulfills the requirements of therapeutic drug monitoring programs. 展开更多
关键词 METRONIDAZOLE FULLERENE Reduced graphene oxide screen-printed electrodes Antibiotic
下载PDF
Anodic voltammetric determination of gemifloxacin using screen-printed carbon electrode 被引量:1
8
作者 Abd-Elgawad Radi Amira Khafagy +1 位作者 Amira El-shobaky Hatem El-mezayen 《Journal of Pharmaceutical Analysis》 SCIE CAS 2013年第2期132-136,共5页
The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode.The effects of pH,scan rates,and con... The electrochemical oxidation behavior and voltammetric assay of gemifloxacin were investigated using differential-pulse and cyclic voltammetry on a screen-printed carbon electrode.The effects of pH,scan rates,and concentration of the drug on the anodic peak current were studied.Voltammograms of gemifloxacin in Tris-HCl buffer(pH 7.0) exhibited a well-defined single oxidation peak.A differential-pulse voltammetric procedure for the quantitation of gemifloxacin has been developed and suitably validated with respect to linearity,limits of detection and quantification,accuracy,precision,specificity,and robustness.The calibration was linear from 0.5 to 10.0 μM,and the limits of detection and quantification were 0.15 and 5.0 μM.Recoveries ranging from 96.26% to 103.64% were obtained.The method was successfully applied to the determination of gemifloxacin in pharmaceutical tablets without any pre-treatment.Excipients present in the tablets did not interfere in the assay. 展开更多
关键词 screen-printed carbon electrode Voltammetry Gemifloxacin Pharmaceutical analysis
下载PDF
Preparation and performance of hierarchically porous carbons as oxygen electrodes for lithium oxygen batteries 被引量:1
9
作者 宋云峰 王先友 +7 位作者 白艳松 王灏 胡本安 舒洪波 杨秀康 易兰花 鞠博伟 张小艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3685-3690,共6页
The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and... The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2. 展开更多
关键词 lithium oxygen battery hierarchically porous carbon oxygen electrode oxygen reduction
下载PDF
All-carbon positive electrodes for stable aluminium batteries 被引量:5
10
作者 Zhili Zhou Na Li +4 位作者 Peng Wang Wei-Li Song Shuqiang Jiao Haosen Chen Daining Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期17-26,共10页
For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)... For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries. 展开更多
关键词 carbon fiber GRAPHITE Current collectors All-carbon electrodE Al BATTERIES
下载PDF
Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries 被引量:12
11
作者 Yang-yang Zhu Yu-hua Wang +2 位作者 Yi-tong Wang Tian-jie Xu Pei Chang 《Carbon Energy》 SCIE CAS 2022年第6期1182-1213,共32页
Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with... Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized. 展开更多
关键词 carbon material GRAPHENE hard carbon negative electrode sodium/potassium-ion batteries
下载PDF
Noninvasive Label-Free Detection of Cortisol and Lactate Using Graphene Embedded Screen-Printed Electrode 被引量:4
12
作者 Satish K.Tuteja Connor Ormsby Suresh Neethirajan 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期42-51,共10页
A sensitive and specific immunosensor for the detection of the hormones cortisol and lactate in human or animal biological fluids, such as sweat and saliva, was devised using the label-free electrochemical chronoamper... A sensitive and specific immunosensor for the detection of the hormones cortisol and lactate in human or animal biological fluids, such as sweat and saliva, was devised using the label-free electrochemical chronoamperometric technique. By using these fluids instead of blood,the biosensor becomes noninvasive and is less stressful to the end user, who may be a small child or a farm animal.Electroreduced graphene oxide(e-RGO) was used as a synergistic platform for signal amplification and template for bioconjugation for the sensing mechanism on a screenprinted electrode. The cortisol and lactate antibodies were bioconjugated to the e-RGO using covalent carbodiimide chemistry. Label-free electrochemical chronoamperometric detection was used to analyze the response to the desired biomolecules over the wide detection range. A detection limit of 0.1 ng mL^(-1) for cortisol and 0.1 mM for lactate was established and a correlation between concentration and current was observed. A portable, handheld potentiostat assembled with Bluetooth communication and battery operation enables the developed system for point-of-care applications. A sandwich-like structure containing the sensing mechanisms as a prototype was designed to secure the biosensor to skin and use capillary action to draw sweat or other fluids toward the sensing mechanism. Overall, the immunosensor shows remarkable specificity, sensitivity as well as the noninvasive and point-of-care capabilities and allows the biosensor to be used as a versatile sensing platform in both developed and developing countries. 展开更多
关键词 GRAPHENE IMMUNOSENSOR ELECTROCHEMICAL screen-printed electrodes Cortisol sensor
下载PDF
Ionic Group Derivitized Nano Porous Carbon Electrodes for Capacitive Deionization 被引量:4
13
作者 Marc Andelman 《Journal of Materials Science and Chemical Engineering》 2014年第3期16-22,共7页
Capacitance for electrostatic adsorption forms primarily within a Debye length of the electrode surface. Capacitive carbon electrodes were derivatized with ionic groups by means of adsorbing a surfactant in order to t... Capacitance for electrostatic adsorption forms primarily within a Debye length of the electrode surface. Capacitive carbon electrodes were derivatized with ionic groups by means of adsorbing a surfactant in order to test the theory that attached ionic groups would exclude co-ions and increase coulombic efficiency without the need for an added charge barrier membrane. It has been discovered that capacitive electrodes surface derivatized with ionic groups become polarized and intrinsically more coulombically efficient. 展开更多
关键词 Capacitive DEIONIZATION Flow Through Capacitor Polarized electrode NANOPOROUS carbon Derivitized carbon electrodes DEIONIZATION DESALINATION Water Purification IONIC Groups
下载PDF
Iron Species-Impregnated Granular Activated Carbon as Modified Particle Electrodes Applied in Benzothiazole Adsorption and Electrocatalytic Degradation 被引量:2
14
作者 jie ding dihui song +2 位作者 xianshu liu zhao song gaofeng wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第3期39-49,共11页
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.... The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%. 展开更多
关键词 MODIFIED ACTIVATED carbon iron particle electrodes BENZOTHIAZOLE ADSORPTION ELECTROCATALYTIC degreadation
下载PDF
DNA Nano-netting Intertexture on Carbon Electrodes 被引量:2
15
作者 XiangQinLIN XiaoHuaJIANG LiPingLU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第8期997-1000,共4页
Native calf thymus double stranded DNA (ct-dsDNA) is successfully immobilized from solution onto carbon substrates by covalent linkages under an optimized deposition potential of 1 .8±0.3 V vs. 50 mmol/L NaCl-Ag/... Native calf thymus double stranded DNA (ct-dsDNA) is successfully immobilized from solution onto carbon substrates by covalent linkages under an optimized deposition potential of 1 .8±0.3 V vs. 50 mmol/L NaCl-Ag/AgCl. The long chain DNA fabricates a layer of well conductive nano-netting intertexture, which is stable in pH 14 alkaline solution and in boiling water. The ct-dsDNA modified carbon fiber disk electrode shows two to three orders of magnitude enlarged electrode effective surface area and similarly enlarged voltammetric responses to Co(phen)33+ and dopamine. Thermal dissociated single stranded ct-DNA can also lead to similar result. This modified electrode will find wide applications in the fields of DNA-based electrochemical biosensors. 展开更多
关键词 Calf thymus DNA iramobilization carbon fiber electrode electrochemical biosensor.
下载PDF
Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells 被引量:3
16
作者 Laura MGonzález Daniel Ramirez Franklin Jaramillo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期222-246,共25页
Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon... Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon solar cells;some issues remain partially unsolved, such as lead toxicity, instability of perovskite materials under continuous illumination, moisture and oxygen, and degradation of the metallic counter electrodes. As an alternative to tackle this last concern, carbon materials have been recently used, due to their good electrical and thermal conductivity, and chemical stability, which makes them one of the most promising materials to replace metallic counter electrodes in the fabrication of PSCs. This review highlights the recent advances of carbon-based PSCs, where the carbon electrode(CE) is the main actor.CEs have become very promising candidates for PSCs;they are mainly fabricated using a simple combination of graphite and carbon black powders embedded in a binder matrix, giving a paste that is then solution-processable, resulting in devices with improved quality stability, when compared to metallic electrodes. In this review, CE’s composition is emphasized, since it can give both, high and lowtemperature processed electrodes, compatible with different device configurations. Finally, the tendencies and opportunities to use CE in PSCs devices are presented. 展开更多
关键词 Perovskite solar cells carbon electrodes Scaling up Stability Solution processing
下载PDF
Deciphering the lithium storage chemistry in flexible carbon fiber-based self-supportive electrodes 被引量:5
17
作者 Hao Yang Tuzhi Xiong +4 位作者 Zhixiao Zhu Ran Xiao Xincheng Yao Yongchao Huang M.-Sadeeq Balogun 《Carbon Energy》 SCIE CAS 2022年第5期820-832,共13页
Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.Howe... Flexible carbon fiber cloth(CFC)is an important scaffold and/or current collector for active materials in the development of flexible self-supportive electrode materials(SSEMs),especially in lithium-ion batteries.However,during the intercalation of Li ions into the matrix of CFC(below 0.5 V vs.Li/Li+),the incompatibility in the capacity of the CFC,when used directly as an anode material or as a current collector for active materials,leads to difficulty in the estimation of its actual contribution.To address this issue,we prepared Ni_(5)P_(4)nanosheets on CFC(denoted CFC@Ni_(5)P_(4))and investigated the contribution of CFC in the CFC@Ni_(5)P_(4)by comparing to the powder Ni_(5)P_(4)nanosheets traditionally coated on a copper foil(CuF)(denoted P-Ni_(5)P_(4)).At a current density of 0.4 mA cm^(−2),the as-prepared CFC@Ni_(5)P_(4)showed an areal capacity of 7.38 mAh cm^(−2),which is significantly higher than that of the PNi_(5)P_(4)electrode.More importantly,theoretical studies revealed that the CFC has a high Li adsorption energy that contributes to the low Li-ion diffusion energy barrier of the Ni_(5)P_(4)due to the strong interaction between the CFC and Ni_(5)P_(4),leading to the superior Li-ion storage performance of the CFC@Ni_(5)P_(4)over the pristine Ni_(5)P_(4)sample.This present work unveils the underlying mechanism leading to the achievement of high performance in SSEMs. 展开更多
关键词 density functional theory flexible carbon fiber cloth lithium-ion batteries Ni5P4 self-supportive electrodes
下载PDF
Examining the Effects of Common Laboratory Methods on the Sensitivity of Carbon Fiber Electrodes in Amperometric Recordings of Dopamine 被引量:1
18
作者 William T. Prater Malli Swamy +1 位作者 Megan D. Beane Deranda B. Lester 《Journal of Behavioral and Brain Science》 2018年第3期117-125,共9页
Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experi... Carbon fiber microelectrodes (CFEs) are useful when combined with electrochemical techniques for measuring changes in neurotransmitter concentrations. We addressed conflicting details regarding the use of CFEs. Experimental groups consisted of CFEs at different ages (1 week, 1 month, or 2 months), cleaned in solvents (isopropanol or xylene), and exposed to in vitro use (flow cell calibrations) or in vivo use (in brain tissue). In order to determine if any of these factors affect CFE sensitivity, the present study utilized fixed potential amperometry and a flow injection system to calibrate CFEs for the measurement of dopamine. The sensitivity index (nA/μM per 100 μm of exposed carbon fiber) was not affected by the age of CFEs or pre-cleaning with xylene or isopropanol. CFE sensitivity of the in vitro exposure group also did not differ from untreated CFEs, indicating the calibration process did not alter sensitivity. However, in vivo use in brain tissue did reduce sensitivity. This effect was negated and sensitivity restored by cleaning CFEs in isopropanol or xylene following in vivo brain recordings. Given that variations in CFE sensitivity can skew results, our findings can help standardize CFE use and explain discrepancies between researchers. 展开更多
关键词 Fixed Potential AMPEROMETRY carbon Fiber electrodE DOPAMINE Flow Injection System electrodE Calibration
下载PDF
Advancing Li-ion storage performance with hybrid vertical carbon/Ni_(3)S_(2)-based electrodes 被引量:2
19
作者 Neelakandan M.Santhosh Nitheesha Shaji d +6 位作者 Petra Stražar Gregor Filipič Janez Zavašnik Chang Won Ho Murugan Nanthagopal Chang Woo Lee UrošCvelbar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期8-18,共11页
Conversion-reaction induced charge storage mechanisms of transition metal sulphides have received considerable interest in designing high-capacity electrodes for electrochemical energy storage devices.However,their lo... Conversion-reaction induced charge storage mechanisms of transition metal sulphides have received considerable interest in designing high-capacity electrodes for electrochemical energy storage devices.However,their low conductivity and structural degradation during cycling limit their applications as energy storage devices.A combination of different nickel sulphide phases tailored with carbon nanostructures is suggested to address these limitations.Herein,a facile,two-step approach is demonstrated for fabricating a hybrid electrode,consisting of trinickel disulphide(Ni_(3)S_(2))formed on a metallic Ni nanoparticle supported by vertical carbon nanotubes(VCN)backbone in the form Ni_(3)S_(2)/Ni@VCN.Ni_(3)S_(2)/Ni@VCN electrodes were tested as anode for lithium-ion batteries,and the electrode featured outstanding lithiumstorage capabilities with a high reversible capacity(1113 m Ah g^(-1) after 100 cycles at 100 m A g^(-1)),excellent long-term cycling stability(770 m Ah g^(-1) after 500 cycles at 200 m A g^(-1)),and good rate capability.The resulting electrode performance is one of the best Li-ion storage capabilities in the Ni_(3)S_(2)-type anode materials described.A unique “broccoli-like”structure of polycrystalline Ni_(3)S_(2)capped on conductive VCN backbone helps the interface storage process and boosts lithium storage performance. 展开更多
关键词 Ni_(3)S_(2) Vertical carbon nanostructures Hierarchical structures Binder-free electrode Lithium-ion batteries
下载PDF
Single atom Cu-N-C catalysts for the electro-reduction of CO_(2) to CO assessed by rotating ring-disc electrode
20
作者 S.Pérez-Rodríguez M.Gutiérrez-Roa +6 位作者 C.Giménez-Rubio D.Ríos-Ruiz P.Arévalo-Cid M.V.Martínez-Huerta A.Zitolo M.J.Lázaro D.Sebastián 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期169-182,I0004,共15页
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c... The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR. 展开更多
关键词 Cu-N-C carbon xerogel Rotating ring disc electrode carbon dioxide reduction reaction carbon monoxide
下载PDF
上一页 1 2 182 下一页 到第
使用帮助 返回顶部