General reductions in lubricant viscosities and increasing loads in machine components highlight the role of tribofilms in providing surface protection against scuffing.However,the relationship between the scuffing pr...General reductions in lubricant viscosities and increasing loads in machine components highlight the role of tribofilms in providing surface protection against scuffing.However,the relationship between the scuffing process and the growth and removal of tribofilm is not well understood.In this study,a multiphysics coupling model,which includes hydrodynamic lubrication,asperity contact,thermal effect,tribochemistry reaction,friction,and surface wear,was developed to capture the initiation of surface scuffing.Simulations and experiments for a piston ring and cylinder liner contact were conducted following a step-load sequence under different temperature conditions.The results show that high temperature and extreme load could induce the lubricant film collapse,which in turn triggers the breakdown of the tribofilm due to the significantly increased removal process.The failures of both lubricant film and tribofilm progress instantaneously in a coupling way,which finally leads to severe scuffing.展开更多
To study the tribological properties of the piston ring-cylinder liner in liquid-solid lubrication, the experiment is carried out on a modified piston ring-cylinder liner tester. Two kinds of liquid-solid lubricants a...To study the tribological properties of the piston ring-cylinder liner in liquid-solid lubrication, the experiment is carried out on a modified piston ring-cylinder liner tester. Two kinds of liquid-solid lubricants are used, one with ultra-dispersed diamond (UDD) nano-particles suspending in pure lubricant, the other with micro-sized MoS2 particles. The particle concentrations are 0%, 0.02% and 0.1% by weight. The experimental temperature is 30℃ and 75℃ respectively. The results show that with the presence of ultra-dispersed diamond particles, the load when scuffing failure occurs is increased. For the lubricant contains MoS2 particles, the scuffing load is decreased. The liquid-solid lubricant also affects the thermal behavior of piston ring-cylinder liner. The surface bulk temperatures of cylinder liner specimen are measured. It has been seen that liquid-solid lubricant used in this research tends to improve the thermal properties generally and the measured friction forces also decreases with the presence of UDD nano-particles. The surface bulk temperature when scuffing occurs is also measured. The results show that the size effect and environment temperature have obvious influence on scuffing load and scuffing temperature. With some new findings, this work is an important complement to the existing research on particle effect on lubrication, because the existing results only show one aspect of this problem.展开更多
基金the National Natural Science Foundation of China(52130502,52171315)the National Key R&D Program of China(2022YFB4201102).
文摘General reductions in lubricant viscosities and increasing loads in machine components highlight the role of tribofilms in providing surface protection against scuffing.However,the relationship between the scuffing process and the growth and removal of tribofilm is not well understood.In this study,a multiphysics coupling model,which includes hydrodynamic lubrication,asperity contact,thermal effect,tribochemistry reaction,friction,and surface wear,was developed to capture the initiation of surface scuffing.Simulations and experiments for a piston ring and cylinder liner contact were conducted following a step-load sequence under different temperature conditions.The results show that high temperature and extreme load could induce the lubricant film collapse,which in turn triggers the breakdown of the tribofilm due to the significantly increased removal process.The failures of both lubricant film and tribofilm progress instantaneously in a coupling way,which finally leads to severe scuffing.
基金This project is supported by National Natural Science Foundation of China (No.50275046)Provincal Natural Science Foundation of Anhui, China (No.050440103).
文摘To study the tribological properties of the piston ring-cylinder liner in liquid-solid lubrication, the experiment is carried out on a modified piston ring-cylinder liner tester. Two kinds of liquid-solid lubricants are used, one with ultra-dispersed diamond (UDD) nano-particles suspending in pure lubricant, the other with micro-sized MoS2 particles. The particle concentrations are 0%, 0.02% and 0.1% by weight. The experimental temperature is 30℃ and 75℃ respectively. The results show that with the presence of ultra-dispersed diamond particles, the load when scuffing failure occurs is increased. For the lubricant contains MoS2 particles, the scuffing load is decreased. The liquid-solid lubricant also affects the thermal behavior of piston ring-cylinder liner. The surface bulk temperatures of cylinder liner specimen are measured. It has been seen that liquid-solid lubricant used in this research tends to improve the thermal properties generally and the measured friction forces also decreases with the presence of UDD nano-particles. The surface bulk temperature when scuffing occurs is also measured. The results show that the size effect and environment temperature have obvious influence on scuffing load and scuffing temperature. With some new findings, this work is an important complement to the existing research on particle effect on lubrication, because the existing results only show one aspect of this problem.