High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and qualit...High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice ...The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time.展开更多
The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij a...The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij and Zhag)of Kashmir.Brown rice flours had higher total dietary fibre(3.08%-3.68%),oil absorption(116.0%-139.0%),emulsion capacity(4.78%-9.52%),emulsion stability(87.46%-99.93%)and resistant starch content(6.80%-9.00%)than polished flours.However,polished flours presented greater water absorption(102.0%-122.0%),foaming capacity(8.00%-13.63%),apparent amylose(19.16%-22.62%),peak(2260.0-2408.0 cP),trough(1372.0-1589.0 cP)and breakdown(714.0-978.0 cP)viscosities than their brown counterparts.Brown rice flours depicted highest total phenolic content(4.40-6.40 mg GAE/g)and inhibition of lipid peroxidation(19.50%-33.20%).However,equilibrium starch hydrolysis percentage(C∞)and predicted glycemic index of brown rice flours were lower than their polished counterparts.Among rice cultivars,brown Zhag flour had the highest total dietary fibre(3.68%),emulsion capacity(9.52%),emulsion stability(99.93%),resistant starch(9.00%),DPPH radical scavenging activity(85.45%)and inhibition of lipid peroxidation(33.20%),respectively.Emulsion capacity and emulsion stability were positively correlated with protein content of rice flours.However,peak,trough,breakdown and setback viscosities were negatively correlated with protein and fat contents of rice flour.The present investigation will be helpful in identifying nutritive role of rice flours from studied cultivars in human diet.展开更多
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice f...A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.展开更多
Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-...Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90℃ of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.展开更多
In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions wi...In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.展开更多
The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better n...The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan) were steeped in distilled water (12 h, 30°C) and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%), insoluble dietary fiber (3.95%), total dietary fiber (4.57%) and free amino acid content (0.64 g/kg) than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively).展开更多
In an era where the health-damaging effects of wheat flour (gluten) are increasingly recognized, rice flour has become an important alternative for many people, yet its psychophysiological effects remain largely unkno...In an era where the health-damaging effects of wheat flour (gluten) are increasingly recognized, rice flour has become an important alternative for many people, yet its psychophysiological effects remain largely unknown. Here, we report the potential beneficial effects of rice flour for sleep disturbances in stressed mice. Four-week-old male ddY mice were reared in social isolation for 4 weeks. The control group was reared in a social group. Rice flour was given orally in food to isolated mice at a dose of 2.5 w/w% and 5.0 w/w% for 4 weeks from the start of isolation rearing. MF food was given to the control group. Pentobarbital-induced (40 mg/kg, i.p.) time to sleep induction and righting reflex was measured to determine the effects of rice flour on sleep behavior. Blood samples were obtained after the experiments, and serum corticosterone was measured. Sections from the prefrontal cortex and the brainstem were isolated to measure serotonin, dopamine and interleukin (IL)-6 concentrations. We found that the administration of rice flour dose-dependently improved time to sleep and reduced sleep time in socially isolated mice. Blood corticosterone concentrations, which increased after isolation stress, were decreased after the administration of rice flour. Serotonin and dopamine concentrations in the prefrontal cortex which decreased after isolation stress improved after the administration of rice flour. Brainstem IL-6 concentrations increased after isolation stress, but decreased dose-dependently after rice flour administration. Our results suggest that rice flour reverses sleep disturbances in mice induced by social isolation.展开更多
The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and free...The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31972005)Xinjiang Uygur Autonomous Region‘Tianshan Talent’Training Plan Project,China(Grant No.2022TSYCCX0063).
文摘High-quality rice flour is the foundation for the production of various rice-based products.Milling is an essential step in obtaining rice flour,during which significant changes occur in the physicochemical and quality characteristics of the flour.Although rice flour obtained through mainstream wet milling methods exhibits superior quality,low production efficiency and wastewater discharge limit the development of the industry.Dry milling,on the other hand,conserves water resources,but adversely affects flour performance due to excessive heat generation.As an emerging powder-making technique,semi-dry milling offers a promising solution by enhancing flour quality and reducing environmental impact.This is achieved by minimizing soaking time through hot air treatment while reducing mechanical energy consumption to reach saturated water absorption levels.However,continuous production remains a challenge.This comprehensive review summarizes the effects of various milling technologies on rice flour properties and product qualities.It also discusses key control indicators and technical considerations for rice flour processing equipment and processes.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金Funded by the Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (JBGS008)the Research Lab Construction of Hainan University (ZY2019HN0904)the Opening Project of State Key Laboratory of Green Building Materials (2022GBM01)。
文摘The mechanism of glutinous rice flour,a kind of natural admixture,on the hydration process,setting time,and microstructure of the Portland cement was investigated.The experimental results show that the glutinous rice flour has an obvious setting retarding effect on cement pastes.The optimal dosage of the glutinous rice flour is 3wt%.In this case,the initial and final setting time of the paste are delayed by 140 and185 min,respectively.The flexural and compressive strengths of the hardened paste are increased by 0.35%and 0.07%after 56 d of curing.The glutinous rice flour hinders the mineral dissolution process and decreases the concentration of calcium ion at the initial stage of hydration due to the complexation effect,thereby hindering the nucleation and growth of CH and C-S-H phases and prolonging the hydration process.However,C-S-H phases combine with the glutinous rice flour to contribute the bonding effect together,which compacts the microstructure of hardened cement pastes at the later hydration stage of cement pastes.Thus,in-depth investigation on the utilization of glutinous rice flour as the admixture for the Portland cement is expected to be meaningful for the control of hydration exothermic rate and setting time.
基金The authors are thankful to Rice Research Centres of Anantnag and Kupwara,J&K for helping us in getting paddy.
文摘The present investigation was aimed to study functional properties,antioxidant activity and in-vitro digestibility characteristics of brown and polished flours obtained from four rice cultivars(SR-4,K-39,Mushq Budij and Zhag)of Kashmir.Brown rice flours had higher total dietary fibre(3.08%-3.68%),oil absorption(116.0%-139.0%),emulsion capacity(4.78%-9.52%),emulsion stability(87.46%-99.93%)and resistant starch content(6.80%-9.00%)than polished flours.However,polished flours presented greater water absorption(102.0%-122.0%),foaming capacity(8.00%-13.63%),apparent amylose(19.16%-22.62%),peak(2260.0-2408.0 cP),trough(1372.0-1589.0 cP)and breakdown(714.0-978.0 cP)viscosities than their brown counterparts.Brown rice flours depicted highest total phenolic content(4.40-6.40 mg GAE/g)and inhibition of lipid peroxidation(19.50%-33.20%).However,equilibrium starch hydrolysis percentage(C∞)and predicted glycemic index of brown rice flours were lower than their polished counterparts.Among rice cultivars,brown Zhag flour had the highest total dietary fibre(3.68%),emulsion capacity(9.52%),emulsion stability(99.93%),resistant starch(9.00%),DPPH radical scavenging activity(85.45%)and inhibition of lipid peroxidation(33.20%),respectively.Emulsion capacity and emulsion stability were positively correlated with protein content of rice flours.However,peak,trough,breakdown and setback viscosities were negatively correlated with protein and fat contents of rice flour.The present investigation will be helpful in identifying nutritive role of rice flours from studied cultivars in human diet.
文摘A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.
基金partly supported by H.M. King Bhumibol Adulyadej’s 72nd Birthday Anniversary Scholarship, Graduate School, Chulalongkorn University, Thailandthe Ratchadapisek Somphot Endowment Fund # R-028-2553 for Development of Rice Products for the Agriculture Coorperation under the Chaipattana Foundation Patronage and Faculty of Science Chulalongkorn University, Thailand
文摘Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90℃ of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.
文摘In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.
文摘The feasibility of partially replacing wheat flour with malted rice flour in bread making was evaluated in several formulations, aiming to find a formulation for the production of malted rice-wheat bread with better nutritional quality and consumer acceptance. The whole grains of a local rice variety (Oryza sativa L. subsp. indica var. Mottaikaruppan) were steeped in distilled water (12 h, 30°C) and germinated for 3 days to obtain high content of soluble materials and amylase activity in bread making. The quality of bread was evaluated by considering the physical and sensorial parameters. When the wheat flour was substituted with malted rice flour, 35% substitution level and the malted rice flour from 3 days of germination was the best according to the physical and sensory qualities of bread. The quality of bread was improved by the addition of 20 g of margarine, 20 g of baking powder and 20 g of yeast in 1 kg of flour. Among different ratios of yeast and baking powder, 2:1 was the best. Bread improver containing amylases and oxidizing agents at the concentration of 40 g/kg was selected as the best concentration. When comparing the final formulation made in the bakery with wheat bread, malted rice-wheat bread contains more soluble dietary fiber (0.62%), insoluble dietary fiber (3.95%), total dietary fiber (4.57%) and free amino acid content (0.64 g/kg) than those in wheat bread (0.5%, 2.73%, 3.23% and 0.36 g/kg, respectively).
文摘In an era where the health-damaging effects of wheat flour (gluten) are increasingly recognized, rice flour has become an important alternative for many people, yet its psychophysiological effects remain largely unknown. Here, we report the potential beneficial effects of rice flour for sleep disturbances in stressed mice. Four-week-old male ddY mice were reared in social isolation for 4 weeks. The control group was reared in a social group. Rice flour was given orally in food to isolated mice at a dose of 2.5 w/w% and 5.0 w/w% for 4 weeks from the start of isolation rearing. MF food was given to the control group. Pentobarbital-induced (40 mg/kg, i.p.) time to sleep induction and righting reflex was measured to determine the effects of rice flour on sleep behavior. Blood samples were obtained after the experiments, and serum corticosterone was measured. Sections from the prefrontal cortex and the brainstem were isolated to measure serotonin, dopamine and interleukin (IL)-6 concentrations. We found that the administration of rice flour dose-dependently improved time to sleep and reduced sleep time in socially isolated mice. Blood corticosterone concentrations, which increased after isolation stress, were decreased after the administration of rice flour. Serotonin and dopamine concentrations in the prefrontal cortex which decreased after isolation stress improved after the administration of rice flour. Brainstem IL-6 concentrations increased after isolation stress, but decreased dose-dependently after rice flour administration. Our results suggest that rice flour reverses sleep disturbances in mice induced by social isolation.
文摘The objective of this research was to investigate the effect of Malva nut gum (MG) replacement on the pasting characteristics and freeze-thaw stability of wheat, rice or waxy rice flours. Pasting properties and freeze-thaw stability of different flours incorporated with 0, 0.5%, 1%, 2%, 3% and 5% of MG were investigated. Pasting temperature (60 ℃-87 ℃) of the pastes significantly decreased with increasing of MG content for wheat and rice flours, but had no significant effect for waxy rice flour. Incorporation of MG into all flours significantly elevated the peak viscosity by about 0.9-2.6 folds when compared to non-MG samples. Hot paste viscosity, breakdown and final viscosity for all flour mixtures significantly increased with increasing of MG which ranged from 81-427, 37-559 and 152-463 RVU, respectively. Freeze-thaw stability measurement demonstrated that higher level of MG in wheat and rice gel mixtures could decrease syneresis. However, MG had no effect on syneresis of waxy rice gel. Presence of MG in flours alters the pasting properties and syneresis effect. It is suggested that higher viscosity and lower syneresis of gels could be modified by MG.