The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was conn...The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was connected to a 6 port valve with a sampling pipe opening to the atmosphere, so gas pressure in the sampling pipe was identical to that of the atmosphere. A semi automatic seawater atmosphere equilibrium system was designed to determine the P CO 2 in seawater. The equilibrium chamber contained in situ seawater and the well equilibrated gas was pushed into the sampling pipe by sample water, so pressure and temperature calibration could be avoided. This method has high accuracy for the determination of P CO 2 in the air and seawater, and was used for in situ determination of P CO 2 in the atmosphere and of the seawater sample in the JGOFS cruise in the East China Sea.展开更多
The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model i...The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for the ENSO model.展开更多
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and af...With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.展开更多
The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations...The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.展开更多
A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. T...A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.展开更多
Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. Th...Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. The model is successfully run for six years under present climate conditions, and the simulations are evaluated against observational and reanalysis data.The model is capable of simulating large-scale oceanic and atmospheric circulation patterns, sea surface temperature(SST) fronts, oceanic eddy kinetic energy, and fine-scale structures of surface winds. The ocean mesoscale structure–induced air–sea interaction characteristics are explored in detail. The model can effectively reproduce positive correlations between SST and surface wind stress induced by mesoscale structures through comparison with observations. The positive correlation is particularly significant over regions with strong oceanic fronts and eddies.However, the responses of wind stress to eddy-induced SST are weaker in the simulation than in the observations, although different magnitudes exist in different areas. Associated with weak wind responses, surface sensible heat flux responses to eddy-induced SST are underestimated slightly, while surface latent heat flux responses are overestimated because of the drier atmospheric boundary layers in the model. Both momentum mixing and pressure adjustment mechanisms play important roles in surface wind changes over oceanic fronts and eddies in the high-resolution model.展开更多
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objecti...Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST) cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)° × (1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25° × 0.25° MC2 grid.展开更多
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedba...Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.展开更多
The data analyses found at first that the air-sea system in the northwestern Pacific region has clear systematical quasi-decadal oscillation, such as the surface air temperature, the subtropical high activities over t...The data analyses found at first that the air-sea system in the northwestern Pacific region has clear systematical quasi-decadal oscillation, such as the surface air temperature, the subtropical high activities over the northwestern Pacific and the SSTA which has different time-scale features from the temporal variation with 3-4 years period of SSTA in the equatorial Pacific. In East Asia, the climate variations, such as the surface air temperature, the precipitation and the beginning date of Mei-yu in the Yangtze River basin, also have clear quasi-decadal oscillation. They can be regarded as the influences of quasi-decadal oscillation of air-sea system in the northwestern Pacific region.展开更多
It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the t...It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.展开更多
The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic s...The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere- ocean oscillator of the ENSO.展开更多
The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (...The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). The results of the coupled integration show that the climate drift has been controlled successfully. Analyses on the responses of ocean circulation to the changes of surface fresh water or salinity forcing show that the ocean spin-up stage under flux condition for salinity is the key to the implementation of air-sea fresh water flux coupling. This study also demonstrates that the Modified—Monthly—Flux—Anomaly coupling scheme (MMFA) brought forward by Yu and Zhang (1998) is suitable not only for daily air—sea heat flux coupling but also for daily fresh water flux coupling. Key words Fresh water flux - Air-sea coupling - Thermohaline circulation This work was co-supported by the National Key Project (Grant No.96-908-02-03), the Excellent National Key Laboratory Research Project (Grant No.49823002) and Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua? for “Validation of Coupled Climate Models”.展开更多
A time-delay sea-air oscillator coupling model is studied. Using Mawhin's continuation theorem, the result on the existence of periodic solutions for the sea-air oscillator model is obtained.
During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric...During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric concentration was nearly constant at 360μatm, showing that the Huanghai Sea surface waters were undersaturated with respect to atmospheric Co during the time of investigation. A model was developed in this study in order to estimate the Co flux at the air-sea interface. The model incorporates the time-series variations of the distributions in SST (sea surface temperature), salinity, mixed-layer depth, atmospheric fco2, gas-transfer velocity, and CZCS chlorophyll concentration in the Huanghai Sea and was calibrated with the observed fco2 data. The primary parameter affecting fco2 in surface water is the variation of SST through time. The annual fluxes of Co are estimated as 0. 033 Gt C from the sea into the atmosphere and 0. 044 Gt C from the air into sea. The Huanghai Sea, thus behaves as a CO2 sink absorbing 0. 011 Gi C of CO2 a year. which.corresponds to about 0. 5 % of global oceanic absorption capacity.展开更多
Statistically different precursory air–sea signals between a super and a regular El Ni no group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Ni no events...Statistically different precursory air–sea signals between a super and a regular El Ni no group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Ni no events during 1958–2008 are first separated into two groups: a super El Ni no group(S-group) and a regular El Ni no group(R-group). Composite analysis shows that a significantly larger SST anomaly(SSTA) tendency appears in S-group than in R-group during the onset phase[April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly(u).This is attributed to the difference in the thermocline depth anomaly(D) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.展开更多
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchang...Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.展开更多
This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoia...This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoiation with the Asian monsoon. Singular value decomposition (SVD) and single field principal component analysis (PCA) are applied to the so and wind anomalies from the 1979 - 1995 NCEP/NCAR reanalysis data.The leading SVD mode explains a predominant amount of squared covariance between the SST and zonal or meridional wind. During winte, the meridional wind’s relation to the SST is betterr than the relation of zonal wind to ase. Despite the large magnitude of the squared covariance between SST and zonalor meridional wind, the spatial patterns of the first mode of SVD between the SST and meridional wind are similar. They both exhibit ellipe-shaped variance with the center near the SCS and a northeast-southwest oriented main axis. The spatial patterne of the leading mode of SVD between the SST and zonal wind are also similar to a certain degree. The zonal wind is not as closely correlated to the SST as the meridional wind is. These results suggest that the meridional wind and SST are stronly coupled during the winter season, and that there is a certain coupled action system in the SCS.展开更多
The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-...The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.展开更多
Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentratio...Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.展开更多
This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular ...This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular value decomposition (SVD) and single field principal component analysis (PCA) were employed to analyse the SST and V anomalies and compare the results with each other. It was found that the leading mode of SVD explained a predominant amount of squared covariance between the SST and meridional wind V, and that the time series expansion coefficients of the first mode between SST and V from PCA and SVD resembled very much each other. This infers that the meridional wind, as an indicator of Asian monsoon, is closely related with the SST through the air sea interaction in the SCS. The spatial patterns of the first mode of SST and V exhibit ellipse shaped variance in the SCS center and a NE SW oriented main axis, which are much similar to those in winter season. These results show that the most active center for both V and SST is in the SCS, which suggests that a regional air sea coupled oscillation possibly exists there for the whole year and is noticeable especially during the winter season. So the SCS is a very important region for the forming of the Asian Monsoon and the climate of the west Pacific.展开更多
文摘The method for determining P CO 2 in the atmosphere and water by using gas chromatography was studied. For determination of P CO 2 in the atmosphere, a sampling method was developed in which the chromatograph was connected to a 6 port valve with a sampling pipe opening to the atmosphere, so gas pressure in the sampling pipe was identical to that of the atmosphere. A semi automatic seawater atmosphere equilibrium system was designed to determine the P CO 2 in seawater. The equilibrium chamber contained in situ seawater and the well equilibrated gas was pushed into the sampling pipe by sample water, so pressure and temperature calibration could be avoided. This method has high accuracy for the determination of P CO 2 in the air and seawater, and was used for in situ determination of P CO 2 in the atmosphere and of the seawater sample in the JGOFS cruise in the East China Sea.
基金Project supported by the National Natural Science Foundation of China(Grant Nos40679016 and 10471039)the State Key Program for Basic Research of China(Grant Nos2003CB415101-03 and 2004CB418304)+2 种基金the Key Basic Research Foundation ofthe Chinese Academy of Sciences,China(Grant No KZCX3-SW-221)partially by E-Institutes of Shanghai Municipal Education Commission of China(Grant No N.E03004)the Natural Science Foundation of Zhejiang Province,China(Grant No Y60628)
文摘The EI Nimo and Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific sea-air interactions. In this paper, an asymptotic method of solving nonlinear equations for the ENSO model is proposed. And based on a class of oscillator of the ENSO model and by employing the method of homotopic mapping, the approximate solution of equations for the corresponding ENSO model is studied. It is proved from the results that homotopic method can be used for analysing the sea surface temperature anomaly in the equatorial Pacific of the sea-air oscillator for the ENSO model.
基金National Natural Science Foundation of China under contract No. 40075003The Prior Study of State Key Project for Basic Research "East Asian Monsoon Experiment".
文摘With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.
基金the National Natural Science Foundation of China,the National Basic Research Program of China (973 Program)
文摘The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.
基金supported by the National Basic Research Program under Grand No.2006CB400506
文摘A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.
基金supported by the National Key R&D Program for Developing Basic Sciences [grant numbers2016YFC1401401 and 2016YFC1401601]the National Natural Science Foundation of China [grant numbers41376026 and 41576025]
文摘Using the Community Earth System Model framework, the authors build a very-high-resolution quasi-global coupled model by coupling an eddy-resolving quasi-global ocean model with a high-resolution atmospheric model. The model is successfully run for six years under present climate conditions, and the simulations are evaluated against observational and reanalysis data.The model is capable of simulating large-scale oceanic and atmospheric circulation patterns, sea surface temperature(SST) fronts, oceanic eddy kinetic energy, and fine-scale structures of surface winds. The ocean mesoscale structure–induced air–sea interaction characteristics are explored in detail. The model can effectively reproduce positive correlations between SST and surface wind stress induced by mesoscale structures through comparison with observations. The positive correlation is particularly significant over regions with strong oceanic fronts and eddies.However, the responses of wind stress to eddy-induced SST are weaker in the simulation than in the observations, although different magnitudes exist in different areas. Associated with weak wind responses, surface sensible heat flux responses to eddy-induced SST are underestimated slightly, while surface latent heat flux responses are overestimated because of the drier atmospheric boundary layers in the model. Both momentum mixing and pressure adjustment mechanisms play important roles in surface wind changes over oceanic fronts and eddies in the high-resolution model.
文摘Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST) cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)° × (1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25° × 0.25° MC2 grid.
基金supported by a National Natural Science Foundation of China (NSFC) Innovation Team Project (Grant No. 40921004)the Fundamental Research Funds for Central Universities (Grant No. 0900841261005)
文摘Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.
文摘The data analyses found at first that the air-sea system in the northwestern Pacific region has clear systematical quasi-decadal oscillation, such as the surface air temperature, the subtropical high activities over the northwestern Pacific and the SSTA which has different time-scale features from the temporal variation with 3-4 years period of SSTA in the equatorial Pacific. In East Asia, the climate variations, such as the surface air temperature, the precipitation and the beginning date of Mei-yu in the Yangtze River basin, also have clear quasi-decadal oscillation. They can be regarded as the influences of quasi-decadal oscillation of air-sea system in the northwestern Pacific region.
文摘It has long been recognized that the evolution of marine storms may be strongly affected by the flux transfer processes over the ocean. High winds in a storm can generate large amounts of spray, which can modify the transfer of momentum, heat, and moisture across the air-sea interface. However, the role of sea spray and air-sea processes in western Pacific typhoons has remained elusive. In this study, the impact of sea spray on air-sea fluxes and the evolution of a typhoon over the western Pacific is investigated using a coupled atmosphere-sea-spray modeling system. Through the case study of the recent Typhoon Fengshen from 2002, we found that: (1) Sea spray can cause a significant latent heat flux increase of up to 40% of the interfacial fluxes in the typhoon; (2) Taking into account the effects of sea spray, the intensity of the modeled typhoon can be increased by 30% in the 10-m wind speed, which may greatly improve estimates of storm maximum intensity and, to some extent, improve the simulations of overall storm structure in the atmospheric model; (3) The effects of sea spray are mainly focused over the high wind regions around the storm center and are mainly felt in the lower part of the troposphere.
基金Project supported by the National Natural Science Foundation of China (Grant No. 40876010), the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA01020304), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110502), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042), and the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135).
文摘The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere- ocean oscillator of the ENSO.
文摘The process of air—sea fresh water exchange is included successfully in the Global— Ocean—Atmosphere Land—System model developed at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). The results of the coupled integration show that the climate drift has been controlled successfully. Analyses on the responses of ocean circulation to the changes of surface fresh water or salinity forcing show that the ocean spin-up stage under flux condition for salinity is the key to the implementation of air-sea fresh water flux coupling. This study also demonstrates that the Modified—Monthly—Flux—Anomaly coupling scheme (MMFA) brought forward by Yu and Zhang (1998) is suitable not only for daily air—sea heat flux coupling but also for daily fresh water flux coupling. Key words Fresh water flux - Air-sea coupling - Thermohaline circulation This work was co-supported by the National Key Project (Grant No.96-908-02-03), the Excellent National Key Laboratory Research Project (Grant No.49823002) and Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua? for “Validation of Coupled Climate Models”.
基金Project supported by the National Natural Science Foundation of China (Grant No 40676016).
文摘A time-delay sea-air oscillator coupling model is studied. Using Mawhin's continuation theorem, the result on the existence of periodic solutions for the sea-air oscillator model is obtained.
文摘During the Huanghai Sea Circulation and Material Flux Expedition in Spring 1996, fco_2 in surface water and atmosphere was measured. The fco2 in surface water varied in a range from 220 to 360 uatm1) while atmospheric concentration was nearly constant at 360μatm, showing that the Huanghai Sea surface waters were undersaturated with respect to atmospheric Co during the time of investigation. A model was developed in this study in order to estimate the Co flux at the air-sea interface. The model incorporates the time-series variations of the distributions in SST (sea surface temperature), salinity, mixed-layer depth, atmospheric fco2, gas-transfer velocity, and CZCS chlorophyll concentration in the Huanghai Sea and was calibrated with the observed fco2 data. The primary parameter affecting fco2 in surface water is the variation of SST through time. The annual fluxes of Co are estimated as 0. 033 Gt C from the sea into the atmosphere and 0. 044 Gt C from the air into sea. The Huanghai Sea, thus behaves as a CO2 sink absorbing 0. 011 Gi C of CO2 a year. which.corresponds to about 0. 5 % of global oceanic absorption capacity.
基金jointly supported by the China National 973 Project(Grant No.2015CB453200)a Jiangsu Province project(Grant No.BK20150062)+4 种基金the NSFC(Grant Nos.4147508441376002and 41530426)the ONR(Grant No.N00014-16-12260)the International Pacific Research Center sponsored by JAMSTEC
文摘Statistically different precursory air–sea signals between a super and a regular El Ni no group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Ni no events during 1958–2008 are first separated into two groups: a super El Ni no group(S-group) and a regular El Ni no group(R-group). Composite analysis shows that a significantly larger SST anomaly(SSTA) tendency appears in S-group than in R-group during the onset phase[April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly(u).This is attributed to the difference in the thermocline depth anomaly(D) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.
基金the National Science Foundation ofChina(No.4 97762 80)
文摘Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23 6 W·m -2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km 2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14 8×10 9 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.
文摘This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoiation with the Asian monsoon. Singular value decomposition (SVD) and single field principal component analysis (PCA) are applied to the so and wind anomalies from the 1979 - 1995 NCEP/NCAR reanalysis data.The leading SVD mode explains a predominant amount of squared covariance between the SST and zonal or meridional wind. During winte, the meridional wind’s relation to the SST is betterr than the relation of zonal wind to ase. Despite the large magnitude of the squared covariance between SST and zonalor meridional wind, the spatial patterns of the first mode of SVD between the SST and meridional wind are similar. They both exhibit ellipe-shaped variance with the center near the SCS and a northeast-southwest oriented main axis. The spatial patterne of the leading mode of SVD between the SST and zonal wind are also similar to a certain degree. The zonal wind is not as closely correlated to the SST as the meridional wind is. These results suggest that the meridional wind and SST are stronly coupled during the winter season, and that there is a certain coupled action system in the SCS.
基金The Marine Public Welfare Project of China under contract Nos200805029,200905012,200905025,and 201005034the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract Nos JG0821 and JG1021
文摘The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.
基金The National Natural Science Foundation of China under contract Nos 41320104008 and 40776039the National Natural Science Foundation for Creative Research Groups under contract No.41221004+1 种基金the Changjiang Scholars Program,Ministry of Education of Chinathe"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.
文摘This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular value decomposition (SVD) and single field principal component analysis (PCA) were employed to analyse the SST and V anomalies and compare the results with each other. It was found that the leading mode of SVD explained a predominant amount of squared covariance between the SST and meridional wind V, and that the time series expansion coefficients of the first mode between SST and V from PCA and SVD resembled very much each other. This infers that the meridional wind, as an indicator of Asian monsoon, is closely related with the SST through the air sea interaction in the SCS. The spatial patterns of the first mode of SST and V exhibit ellipse shaped variance in the SCS center and a NE SW oriented main axis, which are much similar to those in winter season. These results show that the most active center for both V and SST is in the SCS, which suggests that a regional air sea coupled oscillation possibly exists there for the whole year and is noticeable especially during the winter season. So the SCS is a very important region for the forming of the Asian Monsoon and the climate of the west Pacific.