In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f...In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.展开更多
It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synth...It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synthetic aperture radar(SAR)image for the extraction of sea ice is proposed in this paper.The Band 2(B2 image of Sentinel-2(S2 in the research area is selected as optical image data.Preprocessing on the optical image,such as resampling,projection transformation and format conversion,are conducted to the S2 dataset before fusion.Imaging characteristics of the sea ice have been analyzed,and a new deep learning(DL)model,OceanTDL5,is built to detect sea ices.The fusion of the Sentinel-1(S1 and S2 images is realized by solving the optimal pixel values based on deriving Poisson Equation.The experimental results indicate that the use of a fused image improves the accuracy of sea ice detection compared with the use of a single data source.The fused image has richer spatial details and a clearer texture compared with the original optical image,and its material sense and color are more abundant.展开更多
The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weat...The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.展开更多
In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Baye...In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Bayesian sea ice detection algorithm,linear sea ice model parameters and the backscatter variance suitable for HY-2A/SCAT were proposed.The sea ice extent obtained by the Bayesian sea ice detection algorithm was projected on a 12.5 km grid sea ice map and validated by the Advanced Microwave Scanning Radiometer 2(AMSR2)15%sea ice concentration data.The sea ice extent obtained by the Bayesian sea ice detection al-gorithm was found to be in good agreement with that of the AMSR2 during the ice growth season.Meanwhile,the Bayesian sea ice detection algorithm gave a wider ice edge than the AMSR2 during the ice melting season.For the sea ice type classification,the BP neural network was used to classify the Arctic sea ice type(multi-year and first-year ice)from January to May and October to De-cember in 2014.Comparison results between the HY-2A/SCAT sea ice type and Equal-Area Scalable Earth Grid(EASE-Grid)sea ice age data showed that the HY-2A/SCAT multi-year ice extent variation had the same trend as the EASE-Grid data.Classification errors,defined as the ratio of the mismatched sea ice type points between HY-2A/SCAT and EASE-Grid to the total sea ice points,were less than 12%,and the average classification error was 8.6%for the study period,which indicated that the BP neural network classification was a feasible algorithm for HY-2A/SCAT sea ice type classification.展开更多
Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image p...Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering the feasibility of obtaining abundant visible information over the land and the similarity between land fog and sea fog, we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection. We used a seeded region growing module to obtain pixel-level masks from roughlabels generated by the unsupervised domain adaptation model. Experimental results demonstrate that our proposed method achieves an accuracy of sea fog recognition up to 99.17%, which is nearly 3% higher than those vanilla methods.展开更多
Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing f...Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images.展开更多
基金National Key R&D Program of China(2021YFC3000905)Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(42375010)。
文摘In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.
基金the Natural Science Foun-dation of Shandong Province(No.ZR2019MD034)。
文摘It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synthetic aperture radar(SAR)image for the extraction of sea ice is proposed in this paper.The Band 2(B2 image of Sentinel-2(S2 in the research area is selected as optical image data.Preprocessing on the optical image,such as resampling,projection transformation and format conversion,are conducted to the S2 dataset before fusion.Imaging characteristics of the sea ice have been analyzed,and a new deep learning(DL)model,OceanTDL5,is built to detect sea ices.The fusion of the Sentinel-1(S1 and S2 images is realized by solving the optimal pixel values based on deriving Poisson Equation.The experimental results indicate that the use of a fused image improves the accuracy of sea ice detection compared with the use of a single data source.The fused image has richer spatial details and a clearer texture compared with the original optical image,and its material sense and color are more abundant.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2016-04-03the National Key Research and Development Program of China under contract No.2016YFC1402701
文摘The seasonal and inter-annual variations of Arctic cyclone are investigated. An automatic cyclone tracking algorithm developed by University of Reading was applied on the basis of European Center for Medium-range Weather Forecasts(ECMWF) ERA-interim mean sea level pressure field with 6 h interval for 34 a period. The maximum number of the Arctic cyclones is counted in winter, and the minimum is in spring not in summer.About 50% of Arctic cyclones in summer generated from south of 70°N, moving into the Arctic. The number of Arctic cyclones has large inter-annual and seasonal variabilities, but no significant linear trend is detected for the period 1979–2012. The spatial distribution and linear trends of the Arctic cyclones track density show that the cyclone activity extent is the widest in summer with significant increasing trend in CRU(central Russia)subregion, and the largest track density is in winter with decreasing trend in the same subregion. The linear regressions between the cyclone track density and large-scale indices for the same period and pre-period sea ice area indices show that Arctic cyclone activities are closely linked to large-scale atmospheric circulations, such as Arctic Oscillation(AO), North Atlantic Oscillation(NAO) and Pacific-North American Pattern(PNA). Moreover,the pre-period sea ice area is significantly associated with the cyclone activities in some regions.
基金supported by the National Natural Science Foundation of China(No.42030406)。
文摘In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Bayesian sea ice detection algorithm,linear sea ice model parameters and the backscatter variance suitable for HY-2A/SCAT were proposed.The sea ice extent obtained by the Bayesian sea ice detection algorithm was projected on a 12.5 km grid sea ice map and validated by the Advanced Microwave Scanning Radiometer 2(AMSR2)15%sea ice concentration data.The sea ice extent obtained by the Bayesian sea ice detection al-gorithm was found to be in good agreement with that of the AMSR2 during the ice growth season.Meanwhile,the Bayesian sea ice detection algorithm gave a wider ice edge than the AMSR2 during the ice melting season.For the sea ice type classification,the BP neural network was used to classify the Arctic sea ice type(multi-year and first-year ice)from January to May and October to De-cember in 2014.Comparison results between the HY-2A/SCAT sea ice type and Equal-Area Scalable Earth Grid(EASE-Grid)sea ice age data showed that the HY-2A/SCAT multi-year ice extent variation had the same trend as the EASE-Grid data.Classification errors,defined as the ratio of the mismatched sea ice type points between HY-2A/SCAT and EASE-Grid to the total sea ice points,were less than 12%,and the average classification error was 8.6%for the study period,which indicated that the BP neural network classification was a feasible algorithm for HY-2A/SCAT sea ice type classification.
基金supported in part by the Ministry of Education-China Mobile Communication Corp(MoE-CMCC)Artificial Intelligence Project,China(No.MCM20190701)。
文摘Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering the feasibility of obtaining abundant visible information over the land and the similarity between land fog and sea fog, we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection. We used a seeded region growing module to obtain pixel-level masks from roughlabels generated by the unsupervised domain adaptation model. Experimental results demonstrate that our proposed method achieves an accuracy of sea fog recognition up to 99.17%, which is nearly 3% higher than those vanilla methods.
文摘Considering the important applications in the military and the civilian domain, ship detection and classification based on optical remote sensing images raise considerable attention in the sea surface remote sensing filed. This article collects the methods of ship detection and classification for practically testing in optical remote sensing images, and provides their corresponding feature extraction strategies and statistical data. Basic feature extraction strategies and algorithms are analyzed associated with their performance and application in ship detection and classification.Furthermore, publicly available datasets that can be applied as the benchmarks to verify the effectiveness and the objectiveness of ship detection and classification methods are summarized in this paper. Based on the analysis, the remaining problems and future development trends are provided for ship detection and classification methods based on optical remote sensing images.