The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resol...The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.展开更多
Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2...Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2, SOM3, and SOM4) are extracted, and the corresponding time series are used to characterize the variation of the sea level anomaly. Except in some individual months, SOM1 and SOM2 with single-branch jet structures appear alternately during the periods 1993-1998 and 2002-2011. However, during 1999-2001 and 2012-2014, SOM3 and SOM4 with double-branch jet structures are dominant.The sea level anomalies exhibit interannual variations, while the KE stream demonstrates decadal variation. For SOM1, the change in the KE path is less evident, although the KE jet is strong and narrow. For SOM2, the KE jet is weakened and widened and its jet axis moves towards the southwest. Compared with the SOM3, for SOM4 the trough and ridge in the upstream KE region are deeper in the northeast-southwest direction, and accompanied by a jet weakening and splitting.This study shows that SOM analysis is a useful approach for characterizing KE variability.展开更多
A tide model (named DN1.0), which contains 12 principal constituents over China seas and the Northwest Pacific is estimated by along-track harmonic analysis with TOPEX/Poseidon altimetry data taken from 1993 to 2002...A tide model (named DN1.0), which contains 12 principal constituents over China seas and the Northwest Pacific is estimated by along-track harmonic analysis with TOPEX/Poseidon altimetry data taken from 1993 to 2002. CSR3.0, FES95.2 and DNI.0 are used respectively to detide the data for the time series of sea level anomaly (SLA) in the Yellow Sea, East China Sea, South China Sea and Northwest Pacific. The SLA curves and the power spectral density show that the major components that exist in SLA in China seas arise from the error of the tide models.展开更多
Based on sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2014,this paper uses Morlet wavelet transform, Estuarine Coastal Ocean Model(ECOM) and so on to investigat...Based on sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2014,this paper uses Morlet wavelet transform, Estuarine Coastal Ocean Model(ECOM) and so on to investigate the characteristics and possible causes of seasonal sea level anomalies along the South China Sea(SCS) coast. The research results show that:(1) Seasonal sea level anomalies often occur from January to February and from June to October. The frequency of sea level anomalies is the most in August, showing a growing trend in recent years. In addition, the occurring frequency of negative sea level anomaly accounts for 50% of the total abnormal number.(2) The seasonal sea level anomalies are closely related to ENSO events. The negative anomalies always occurred during the El Ni?o events, while the positive anomalies occurred during the La Ni?a(late El Ni?o) events. In addition, the seasonal sea level oscillation periods of 4–7 a associated with ENSO are the strongest in winter, with the amplitude over 2 cm.(3) Abnormal wind is an important factor to affect the seasonal sea level anomalies in the coastal region of the SCS. Wind-driven sea level height(SSH) is basically consistent with the seasonal sea level anomalies. Moreover, the influence of the tropical cyclone in the coastal region of the SCS is concentrated in summer and autumn, contributing to the seasonal sea level anomalies.(4) Seasonal variations of sea level, SST and air temperature are basically consistent along the coast of the SCS, but the seasonal sea level anomalies have no much correlation with the SST and air temperature.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT...The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.展开更多
The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the ...The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.展开更多
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00...Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.展开更多
Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the...Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.展开更多
Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980-2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea...Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980-2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30-45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%-80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4-7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2-3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.展开更多
Based on the analysis of wind,ocean currents,sea surface temperature(SST) and remote sensing satellite altimeter data,the characteristics and possible causes of sea level anomalies in the Xisha sea area are investig...Based on the analysis of wind,ocean currents,sea surface temperature(SST) and remote sensing satellite altimeter data,the characteristics and possible causes of sea level anomalies in the Xisha sea area are investigated.The main results are shown as follows:(1) Since 1993,the sea level in the Xisha sea area was obviously higher than normal in 1998,2001,2008,2010 and 2013.Especially,the sea level in 1998 and 2010 was abnormally high,and the sea level in 2010 was 13.2 cm higher than the muti-year mean,which was the highest in the history.In 2010,the sea level in the Xisha sea area had risen 43 cm from June to August,with the strength twice the annual variation range.(2) The sea level in the Xisha sea area was not only affected by the tidal force of the celestial bodies,but also closely related to the quasi 2 a periodic oscillation of tropical western Pacific monsoon and ENSO events.(3)There was a significant negative correlation between sea level in the Xisha sea area and ENSO events.The high sea level anomaly all happened during the developing phase of La Ni-a.They also show significant negative correlations with Ni-o 4 and Ni-o 3.4 indices,and the lag correlation coefficients for 2 months and 3 months are–0.46 and –0.45,respectively.(4) During the early La Ni-a event form June to November in 2010,the anomalous wind field was cyclonic.A strong clockwise vortex was formed for the current in 25 m layer in the Xisha sea area,and the velocity of the current is close to the speed of the Kuroshio near the Luzon Strait.In normal years,there is a “cool eddy”.While in 2010,from July to August,the SST in the area was 2–3°C higher than that of the same period in the history.展开更多
The sea level anomalies(SLAs)pattern in the northwestern Pacific delineated significant differences between La Ni?a events occurring with and without negative Indian Ocean Dipole(IOD)events.During the pure La Ni?a eve...The sea level anomalies(SLAs)pattern in the northwestern Pacific delineated significant differences between La Ni?a events occurring with and without negative Indian Ocean Dipole(IOD)events.During the pure La Ni?a events,positive the sea surface level anomalies(SLAs)appear in the northwestern Pacific,but SLAs are weakened and negative SLAs appear in the northwestern Pacific under the contribution of the negative IOD events in 2010/2011.The negative IOD events can trigger significant westerly wind anomalies in the western tropical Pacific,which lead to the breakdown of the pronounced positive SLAs in the northwestern Pacific.Meanwhile,negative SLAs excited by the positive wind stress curl near the dateline propagated westward in the form of Rossby waves until it approached the western Pacific boundary in mid-2011,which maintained and enhanced the negative phase of SLAs in the northwestern Pacific and eventually,it could significantly influence the bifurcation and transport of the North Equatorial Current(NEC).展开更多
In this study the steric height anomaly which is calculated from the hydrological data (EN3) is compared with the sea level anomaly derived from satellite altimetry in the Nordic Seas. The overall pattern of steric ...In this study the steric height anomaly which is calculated from the hydrological data (EN3) is compared with the sea level anomaly derived from satellite altimetry in the Nordic Seas. The overall pattern of steric height is that it is higher in the margin area and lower in the middle area. The extreme values of steric height linear change from 1993 to 2010 occur in the Lofoten Basin and off the Norwegian coast, respectively. Such a distribution may be partly attributed to the freshening trend of the Nordic Seas. The correlation between SLA (sea level anomaly) and SHA (steric height anomaly) is not uniform over the Nordic Seas. The time series of SLA and SHA agree well in the Lofoten Basin and northern Norwegian Basin, and worse in the northern Norwegian Sea, implying that the baroclinic effect plays a dominant role in most areas in the Norwegian Sea and the barotropic effect plays a dominant role in the northern Norwegian Sea. The weaker correlations between SLA and SHA in the Greenland and Iceland Seas lead a conclusion that the barotropic contribution is significant in these areas. The area-mean SHA over the entire Nordic Seas has similar amplitudes compared with the SLA during 1996-2002, but SHA has become lower than SLA, being less than half of SLA since 2006.展开更多
Seasonal cycle is the most significant signals of topography and circulation in the Bohai Sea (BS)and Yellow Sea (YS) forced by prevailing monsoon and is still poorly understood due to lack of data in their interiors....Seasonal cycle is the most significant signals of topography and circulation in the Bohai Sea (BS)and Yellow Sea (YS) forced by prevailing monsoon and is still poorly understood due to lack of data in their interiors. In the present study, seasonal cycles of topography in the BS and YS and its relationship with atmospheric forcing and oceanic adjustment were examined and discussed using TOPEX/Poseidon and ERS-1/2 Sea Level Anomalies (SLA) data. Analyses revealed complicated seasonal cycles of topography composed mainly of2 REOF modes, the winter-summer mode (WIM) and spring-autumn mode (SAM). The WIM with action center in the BS displayed peak and southward pressure gradient in July, and valley and northward pressure gradient in January, which is obviously the direct response to monsoon with about 1-month response time. The SAM with action center in the western south YS displayed peak and northward pressure gradient in October and valley and southward pressure gradient in April. After the mature period of monsoon, the action center in the BS became weakened while that in the western south YS became strengthened because of regional convergence or divergence induced by seasonal variations of the Taiwan Warm Current and Yellow Sea Coastal Current. The direct response of topography to monsoon resulted in the WIM, while oceanic adjustment of topography played an important role in the forming of the SAM.展开更多
In this research, we normalized the character- istics of ocean eddies by using satellite observation of the Sea Level Anomaly (SLA) data to determine the most typical shape of ocean eddies. This normalization is bas...In this research, we normalized the character- istics of ocean eddies by using satellite observation of the Sea Level Anomaly (SLA) data to determine the most typical shape of ocean eddies. This normalization is based on modified analytic functions with nonlinear optimal fitting. The most typical eddy is the Taylor vortex (~50%), which exhibits a Gaussian-shaped exp(-r2) SLA and a vorticity distribution of (1-rZ)exp(-r2) as a function of the normalized radii r. The larger the amplitude of the eddy, the more likely the eddy is to be Gaussian-shaped. Furthermore, approximately 40% of ocean eddies are combinations of two Gaussian eddies with different parameters, but the composition of these types of eddies is more like a quadratic eddy than a Gaussian one. Only a small portion of oceanic eddies are pure quadratic eddies ( 〈 10%) with the same vorticity distribution as a Rankine vortex. We concluded that the Taylor vortex is a good approximation of the typical shape of ocean eddies.展开更多
This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period b...This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.展开更多
Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability an...Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas. The measurements from 4 buoys (B51001, B51002, B51003 and B51004) in the Hawaii area are used to study the responses of the quantities to El Nino and Southern Oscillation (ENSO). Long-term averages of these data reflect precise seasonal and climatological characteristics of SST, wind speed and SWH around the Hawaii area. Buoy observations from B51001 suggest a significant warming trend which is, however, not very clear from the other three buoys. Compared with the variability of SST and SWH, the wind speeds from the buoy observations show an increasing trend. The impacts of EI Nifio on SST and wind waves are also shown. Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variability of sea level in the Hawaii area. The results also show an increasing trend in sea level anomaly (SLA). The low-passed SLA in the Hawaii area is consistent with the inverse phase of the low-passed SOI (Southern Oscillation Index). Compared with the low-passed SOl and PDO (Pacific Decadal Oscillation), the low-passed PNA (Pacific-North America Index) has a better correlation with the low-passed SEA in the Hawaii area.展开更多
As one of the ocean sudden natural disasters,the tsunami is not easily to differentiate from the ocean variation in the open ocean due to the tsunami wave amplitude is less than one meter with hundreds of kilometers w...As one of the ocean sudden natural disasters,the tsunami is not easily to differentiate from the ocean variation in the open ocean due to the tsunami wave amplitude is less than one meter with hundreds of kilometers wavelength. But the wave height will increases up to tens of meters with enormous energy when the tsunami arrives at the coast. It would not only devastate entire cities near coast,but also kill millions of people. It is necessary to forecast and make warning before the tsunami arriving for many countries and regions around the Pacific rim. Two kinds of data were used in this study to extract the signals of 2011 Tohoku tsunami and 2014Iquique tsunami. Wave undulations from DART( Deep-ocean Assessment and Reporting of Tsunamis) buoys and SLA from altimetry could extract the tsunami signals generated by this two earthquake. The signals of Tohoku tsunami were stronger than that of Iquique tsunami probably due to the 2011 Tohoku tsunami was generated by a magnitude 9. 0 earthquake and the 2014 Iquique tsunami was triggered by a magnitude 8. 2 earthquake.展开更多
A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea...A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea surface temperature(SST),the zonally averaged seasonal cycle of SST,the variability of the sea level anomaly(SLA),the zonally and meridionally averaged temperature and salinity,and the equatorial undercurrent.It is found that the simulated seasonal cycle of SST is 0.2–0.8 stronger than observed at midlatitudes.The modeled SST is 0.29°C warmer than the observed for the global ocean.the structure of the subsurface temperature and salinity is similar to the observed.moreover,the variability of SLA exhibits the same pattern as observed.The modeled equatorial undercurrent in the pacific ocean is weaker than observed,but stronger than the ecco reanalysis product.overall,the model can reproduce the large-scale ocean states,and is suitable for analyses seeking to better understand the dynamics and thermodynamics of the upper ocean,as well as ocean variability.展开更多
On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130...On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d.展开更多
基金The Major State Basic Research Development Program of China under contract Nos 201-1CB403606 and 2011CB403500the National Natural Science Foundation of China under contract Nos 41222038,41076011and 41206023the National Marine Environmental Forecasting Center Operational Development Foundation of the State Oceanic Administration of China under contract No.2013002
文摘The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.
基金supported by the National Basic Research Program of China(973 Program)[grant number 2013CB956203]
文摘Satellite altimeter SSH data in the Kuroshio Extension (KE) region gathered during the period January 1993 to December 2014 are analyzed using self-organizing map (SOM) analysis. Four spatial patterns (SOM1, SOM2, SOM3, and SOM4) are extracted, and the corresponding time series are used to characterize the variation of the sea level anomaly. Except in some individual months, SOM1 and SOM2 with single-branch jet structures appear alternately during the periods 1993-1998 and 2002-2011. However, during 1999-2001 and 2012-2014, SOM3 and SOM4 with double-branch jet structures are dominant.The sea level anomalies exhibit interannual variations, while the KE stream demonstrates decadal variation. For SOM1, the change in the KE path is less evident, although the KE jet is strong and narrow. For SOM2, the KE jet is weakened and widened and its jet axis moves towards the southwest. Compared with the SOM3, for SOM4 the trough and ridge in the upstream KE region are deeper in the northeast-southwest direction, and accompanied by a jet weakening and splitting.This study shows that SOM analysis is a useful approach for characterizing KE variability.
基金Supported by Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No.1469990324233-03-04).
文摘A tide model (named DN1.0), which contains 12 principal constituents over China seas and the Northwest Pacific is estimated by along-track harmonic analysis with TOPEX/Poseidon altimetry data taken from 1993 to 2002. CSR3.0, FES95.2 and DNI.0 are used respectively to detide the data for the time series of sea level anomaly (SLA) in the Yellow Sea, East China Sea, South China Sea and Northwest Pacific. The SLA curves and the power spectral density show that the major components that exist in SLA in China seas arise from the error of the tide models.
基金The National Key Research and Development Program of China under contract No.2016YFC1402610
文摘Based on sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2014,this paper uses Morlet wavelet transform, Estuarine Coastal Ocean Model(ECOM) and so on to investigate the characteristics and possible causes of seasonal sea level anomalies along the South China Sea(SCS) coast. The research results show that:(1) Seasonal sea level anomalies often occur from January to February and from June to October. The frequency of sea level anomalies is the most in August, showing a growing trend in recent years. In addition, the occurring frequency of negative sea level anomaly accounts for 50% of the total abnormal number.(2) The seasonal sea level anomalies are closely related to ENSO events. The negative anomalies always occurred during the El Ni?o events, while the positive anomalies occurred during the La Ni?a(late El Ni?o) events. In addition, the seasonal sea level oscillation periods of 4–7 a associated with ENSO are the strongest in winter, with the amplitude over 2 cm.(3) Abnormal wind is an important factor to affect the seasonal sea level anomalies in the coastal region of the SCS. Wind-driven sea level height(SSH) is basically consistent with the seasonal sea level anomalies. Moreover, the influence of the tropical cyclone in the coastal region of the SCS is concentrated in summer and autumn, contributing to the seasonal sea level anomalies.(4) Seasonal variations of sea level, SST and air temperature are basically consistent along the coast of the SCS, but the seasonal sea level anomalies have no much correlation with the SST and air temperature.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.
基金The National Basic Research Program of China under contract Nos 2012CB417404 and 2011CB403504the National Natural Science Foundation of China under contract No. 41075064the National High Technology Research and Development Program of China under contract No. 2008AA09A404-3
文摘The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.
基金This study is supported by the Doctoral Startup Foundation of 0cean University of China (2003)partly supported by the National Science Foundation of China (40506035)The altimeter products were produced by the CLS Space 0ceanography Division as part of the Environment and Climate EU ENACT project (EVK2-CT2001-00117) and with support from CNES.
文摘The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.
基金The Open Fund of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resource under contract No.MESTA-2020-B005the Shandong Provincial Natural Science Foundation under contract No.ZR2020QD087+1 种基金the National Key R&D Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703the National Natural Science Foundation of China under contract Nos 42104035 and 41706115。
文摘Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.
基金supported by the National Basic Research Program of China under Grant No. 973-2007CB- 411807
文摘Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.
基金The Project of Global Change and Air-Sea Interaction under Contract No.GASI-03-01-01-09
文摘Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980-2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30-45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%-80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4-7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2-3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.
文摘Based on the analysis of wind,ocean currents,sea surface temperature(SST) and remote sensing satellite altimeter data,the characteristics and possible causes of sea level anomalies in the Xisha sea area are investigated.The main results are shown as follows:(1) Since 1993,the sea level in the Xisha sea area was obviously higher than normal in 1998,2001,2008,2010 and 2013.Especially,the sea level in 1998 and 2010 was abnormally high,and the sea level in 2010 was 13.2 cm higher than the muti-year mean,which was the highest in the history.In 2010,the sea level in the Xisha sea area had risen 43 cm from June to August,with the strength twice the annual variation range.(2) The sea level in the Xisha sea area was not only affected by the tidal force of the celestial bodies,but also closely related to the quasi 2 a periodic oscillation of tropical western Pacific monsoon and ENSO events.(3)There was a significant negative correlation between sea level in the Xisha sea area and ENSO events.The high sea level anomaly all happened during the developing phase of La Ni-a.They also show significant negative correlations with Ni-o 4 and Ni-o 3.4 indices,and the lag correlation coefficients for 2 months and 3 months are–0.46 and –0.45,respectively.(4) During the early La Ni-a event form June to November in 2010,the anomalous wind field was cyclonic.A strong clockwise vortex was formed for the current in 25 m layer in the Xisha sea area,and the velocity of the current is close to the speed of the Kuroshio near the Luzon Strait.In normal years,there is a “cool eddy”.While in 2010,from July to August,the SST in the area was 2–3°C higher than that of the same period in the history.
基金The SOA Program on Global Change and Air-Sea Interactions under contract Nos GASI-IPOVAI-02,GASI-IPOVAI-03 and GASI-03-01-01-04the National Key Research and Development Program of China under contract Nos 2016YFC1402607,2016YFC1401003 and 2016YFC1401403+1 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects under contract No.XDA1102030104the National Natural Science Foundation of China under contract No.41505041
文摘The sea level anomalies(SLAs)pattern in the northwestern Pacific delineated significant differences between La Ni?a events occurring with and without negative Indian Ocean Dipole(IOD)events.During the pure La Ni?a events,positive the sea surface level anomalies(SLAs)appear in the northwestern Pacific,but SLAs are weakened and negative SLAs appear in the northwestern Pacific under the contribution of the negative IOD events in 2010/2011.The negative IOD events can trigger significant westerly wind anomalies in the western tropical Pacific,which lead to the breakdown of the pronounced positive SLAs in the northwestern Pacific.Meanwhile,negative SLAs excited by the positive wind stress curl near the dateline propagated westward in the form of Rossby waves until it approached the western Pacific boundary in mid-2011,which maintained and enhanced the negative phase of SLAs in the northwestern Pacific and eventually,it could significantly influence the bifurcation and transport of the North Equatorial Current(NEC).
基金The Key Project of Chinese Natural Science Foundation under contract No.41330960the Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No.CHINARE2014-04-03-01
文摘In this study the steric height anomaly which is calculated from the hydrological data (EN3) is compared with the sea level anomaly derived from satellite altimetry in the Nordic Seas. The overall pattern of steric height is that it is higher in the margin area and lower in the middle area. The extreme values of steric height linear change from 1993 to 2010 occur in the Lofoten Basin and off the Norwegian coast, respectively. Such a distribution may be partly attributed to the freshening trend of the Nordic Seas. The correlation between SLA (sea level anomaly) and SHA (steric height anomaly) is not uniform over the Nordic Seas. The time series of SLA and SHA agree well in the Lofoten Basin and northern Norwegian Basin, and worse in the northern Norwegian Sea, implying that the baroclinic effect plays a dominant role in most areas in the Norwegian Sea and the barotropic effect plays a dominant role in the northern Norwegian Sea. The weaker correlations between SLA and SHA in the Greenland and Iceland Seas lead a conclusion that the barotropic contribution is significant in these areas. The area-mean SHA over the entire Nordic Seas has similar amplitudes compared with the SLA during 1996-2002, but SHA has become lower than SLA, being less than half of SLA since 2006.
文摘Seasonal cycle is the most significant signals of topography and circulation in the Bohai Sea (BS)and Yellow Sea (YS) forced by prevailing monsoon and is still poorly understood due to lack of data in their interiors. In the present study, seasonal cycles of topography in the BS and YS and its relationship with atmospheric forcing and oceanic adjustment were examined and discussed using TOPEX/Poseidon and ERS-1/2 Sea Level Anomalies (SLA) data. Analyses revealed complicated seasonal cycles of topography composed mainly of2 REOF modes, the winter-summer mode (WIM) and spring-autumn mode (SAM). The WIM with action center in the BS displayed peak and southward pressure gradient in July, and valley and northward pressure gradient in January, which is obviously the direct response to monsoon with about 1-month response time. The SAM with action center in the western south YS displayed peak and northward pressure gradient in October and valley and southward pressure gradient in April. After the mature period of monsoon, the action center in the BS became weakened while that in the western south YS became strengthened because of regional convergence or divergence induced by seasonal variations of the Taiwan Warm Current and Yellow Sea Coastal Current. The direct response of topography to monsoon resulted in the WIM, while oceanic adjustment of topography played an important role in the forming of the SAM.
文摘In this research, we normalized the character- istics of ocean eddies by using satellite observation of the Sea Level Anomaly (SLA) data to determine the most typical shape of ocean eddies. This normalization is based on modified analytic functions with nonlinear optimal fitting. The most typical eddy is the Taylor vortex (~50%), which exhibits a Gaussian-shaped exp(-r2) SLA and a vorticity distribution of (1-rZ)exp(-r2) as a function of the normalized radii r. The larger the amplitude of the eddy, the more likely the eddy is to be Gaussian-shaped. Furthermore, approximately 40% of ocean eddies are combinations of two Gaussian eddies with different parameters, but the composition of these types of eddies is more like a quadratic eddy than a Gaussian one. Only a small portion of oceanic eddies are pure quadratic eddies ( 〈 10%) with the same vorticity distribution as a Rankine vortex. We concluded that the Taylor vortex is a good approximation of the typical shape of ocean eddies.
基金supported by the 973 Program(Grant No.2006CB403606)the National Natural Science Foundation of China(Grant No.40606008).
文摘This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.
基金the National Basic Research Program of China under Grant No 973-2007CB411807National High Technology Development Project under Grant No 863-2006AA09Z140+1 种基金China Postdoctoral Science Foundation funded project under Grant No 2008041345the Scientific Research Starting Foundation for Doctoral of Institute of Meteorology,PLA University of Science and Technology
文摘Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas. The measurements from 4 buoys (B51001, B51002, B51003 and B51004) in the Hawaii area are used to study the responses of the quantities to El Nino and Southern Oscillation (ENSO). Long-term averages of these data reflect precise seasonal and climatological characteristics of SST, wind speed and SWH around the Hawaii area. Buoy observations from B51001 suggest a significant warming trend which is, however, not very clear from the other three buoys. Compared with the variability of SST and SWH, the wind speeds from the buoy observations show an increasing trend. The impacts of EI Nifio on SST and wind waves are also shown. Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variability of sea level in the Hawaii area. The results also show an increasing trend in sea level anomaly (SLA). The low-passed SLA in the Hawaii area is consistent with the inverse phase of the low-passed SOI (Southern Oscillation Index). Compared with the low-passed SOl and PDO (Pacific Decadal Oscillation), the low-passed PNA (Pacific-North America Index) has a better correlation with the low-passed SEA in the Hawaii area.
基金supported and funded by National 973 and 863 Project of China(2013CB733301,2013AA122502)National Natural Science Foundation of China(41210006)
文摘As one of the ocean sudden natural disasters,the tsunami is not easily to differentiate from the ocean variation in the open ocean due to the tsunami wave amplitude is less than one meter with hundreds of kilometers wavelength. But the wave height will increases up to tens of meters with enormous energy when the tsunami arrives at the coast. It would not only devastate entire cities near coast,but also kill millions of people. It is necessary to forecast and make warning before the tsunami arriving for many countries and regions around the Pacific rim. Two kinds of data were used in this study to extract the signals of 2011 Tohoku tsunami and 2014Iquique tsunami. Wave undulations from DART( Deep-ocean Assessment and Reporting of Tsunamis) buoys and SLA from altimetry could extract the tsunami signals generated by this two earthquake. The signals of Tohoku tsunami were stronger than that of Iquique tsunami probably due to the 2011 Tohoku tsunami was generated by a magnitude 9. 0 earthquake and the 2014 Iquique tsunami was triggered by a magnitude 8. 2 earthquake.
基金supported by the National Key R&D Program of China [Grant No.2016YFC1401705]the National Natural Science Foundation of China [Grant Nos.41176015 and41776041]+2 种基金the Chinese Academy Sciences Project ‘Western Pacific Ocean System:Structure,Dynamics and Consequences’[Grant No.XDA11010203]confidencial military project [Grant No.315030401]the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences [Project No.LTO1501]
文摘A historical run(1993–2014)of a global,eddy-permitting,hybrid coordinate ocean model(HYCOM)is evaluated against observations.The authors evaluate several metrics in the model,including the spatial distribution of sea surface temperature(SST),the zonally averaged seasonal cycle of SST,the variability of the sea level anomaly(SLA),the zonally and meridionally averaged temperature and salinity,and the equatorial undercurrent.It is found that the simulated seasonal cycle of SST is 0.2–0.8 stronger than observed at midlatitudes.The modeled SST is 0.29°C warmer than the observed for the global ocean.the structure of the subsurface temperature and salinity is similar to the observed.moreover,the variability of SLA exhibits the same pattern as observed.The modeled equatorial undercurrent in the pacific ocean is weaker than observed,but stronger than the ecco reanalysis product.overall,the model can reproduce the large-scale ocean states,and is suitable for analyses seeking to better understand the dynamics and thermodynamics of the upper ocean,as well as ocean variability.
基金This study was supported by the National Natural Science Foundation of China under contract Nos 40136010 and 40520140074.
文摘On the basis of maps of sea level anomalies data set from October 1992 to January 2004, pronounced low frequency variations with periods of about 500 d are detected in the area near 20°N from 160°W to 130°E. A linear two-layer model is employed to explain the mechanism. It is found that the first-mode long baroclinic Rossby waves at 20°N in the northwest Pacific propagate westward in the form of free waves at a speed of about 10.3 cm/s. This confirms that the observed low frequency variabilities appear as baroclinic Rossby waves. It further shows that these low frequency variabilities around 20°N in the northwest Pacific can potentially be predicted with a lead up to 900 d.