期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Comprehensive Risk Assessment of Sea Level Rise and Tropical Cyclones in Dongzhaigang Mangroves,China
1
作者 DING Ruyi CAI Rongshuo +3 位作者 YAN Xiuhua LI Cuihua WANG Cui NIE Xinyu 《Chinese Geographical Science》 SCIE CSCD 2024年第4期631-646,共16页
Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ... Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management. 展开更多
关键词 MANGROVE climate change risk assessment combined hazards sea level rise(SLR) tropical cyclones(TCs) resilience development Dongzhaigang China
下载PDF
The Impact of Sea Level Rise on Roadway Design and Evacuation Routes in Delaware
2
作者 Jack Palevich Ardeshir Faghri Ahmet Karakurt 《American Journal of Climate Change》 2024年第1期69-82,共14页
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans... As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas. 展开更多
关键词 sea level Rise Roadway Design Evacuation Routes
下载PDF
Numerical Simulation of the Influence of Mean Sea Level Rise on Typhoon Storm Surge in the East China Sea 被引量:3
3
作者 高志刚 韩树宗 +2 位作者 刘克修 郑运霞 于华明 《Marine Science Bulletin》 CAS 2008年第2期36-49,共14页
In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED... In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study. 展开更多
关键词 Storm surge simulation ECOMSED model East China sea sea level rise
下载PDF
Climate warming and sea level rise
4
作者 岳军 Dong YUE +2 位作者 吴桑云 耿秀山 赵长荣 《Marine Science Bulletin》 2012年第1期28-41,共14页
Based on a large number of actual data, the author believe that the modem global warming and sea level rise resulted from climate warming after the cold front of the Little Ice Age about 200 years ago and the developm... Based on a large number of actual data, the author believe that the modem global warming and sea level rise resulted from climate warming after the cold front of the Little Ice Age about 200 years ago and the developmnet of the sea level rise phase. In the past 30 years, the rate of sea level rise was increasing, which is under the background of the average temperature uplift 0.2F°(0.11℃)every 10 years in succession from the 1980s to the past 10 years this century. On the basis of the absolute and relative sea-level rise rate that was calculated from the tidal data during the same period at home and abroad in the last 30 years, in accordance with the resolutions of the 2010 climate conference in Cancun, at the same time, considering the previous prediction and research, the world's sea levels and the relative sea level in Tianjin, Shanghai, Dongying, Xiamen, Haikou and other coastal cities that have severe land subsidence in 2050 and 2100 are calculated and evaluated. 展开更多
关键词 global warming sea level rise RATE PREDICTION EVALUATION
下载PDF
Effects of Vegetation Type on Surface Elevation Change in Liaohe River Delta Wetlands Facing Accelerated Sea Level Rise 被引量:5
5
作者 WANG Guodong WANG Ming +3 位作者 JIANG Ming LYU Xianguo HE Xingyuan WU Haitao 《Chinese Geographical Science》 SCIE CSCD 2017年第5期810-817,共8页
Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inor... Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, and vegetation is important in these processes. To study the effects of vegetation type on surface elevation change, we measured surface accretion and elevation change from 2011 to 2016 using rod surface elevation table and feldspar marker horizon method (RSET-MH) in two Phragmites and two Suaeda marshes in the Liaohe River Delta. The Phragmites marshes exhibited higher rates of surface accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.78 mm/yr and 9.26 mm/yr and surface accretion rates at 17.56 mm/yr and 17.88 mm/yr, respectively. At the same time, the two Suaeda marsh sites had average surface elevation change rates at 5.77 mmJyr and 5.91 mm/yr and surface accretion rates at 13.42 mm/yr and 14.38 mm/yr, respectively. The elevation change rates in both the Phragmites marshes and the Suaeda marshes in the Liaohe River Delta could keep pace and even continue to gain elevation relative to averaged sea level rise in the Bohai Sea reported by the 2016 State Oceanic Administration, Peo- ple's Republic of China projection (2.4-5.5 mm/yr) in current situations. Our data suggest that vegetation is important in the accretionary processes and vegetation type could regulate the wetland surface elevation. However, the vulnerability of coastal wetlands in the Liaohe River Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery, especially for the Suaeda marshes. 展开更多
关键词 sea level rise wetland elevation surface accretion Phragmites marsh Suaeda marsh Liaohe River Delta
下载PDF
Sea level rise projection in the South China Sea from CMIP5 models 被引量:5
6
作者 HUANG Chuanjiang QIAO Fangli 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第3期31-41,共11页
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210... Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves. 展开更多
关键词 sea level rise South China sea dynamic sea level steric sea level CMIP5 models
下载PDF
Greenland Ice Sheet Contribution to Future Global Sea Level Rise based on CMIP5 Models 被引量:5
7
作者 YAN Qing WANG Huijun +1 位作者 Ola M.JOHANNESSEN ZHANG Zhongshi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期8-16,共9页
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large u... Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs. 展开更多
关键词 sea level rise Greenland ice sheet ice sheet modeling model evaluation
下载PDF
Prediction of China's Submerged Coastal Areas by Sea Level Rise due to Climate Change 被引量:5
8
作者 ZUO Juncheng YANG Yiqiu +2 位作者 ZHANG Jianli CHEN Meixiang XU Qing 《Journal of Ocean University of China》 SCIE CAS 2013年第3期327-334,共8页
Based on the simulation with the Ocean-Atmosphere Coupled Model CCSM and Ocean Model POP under the green- house gas emission scenario of the IPCC SRES A2 (IPCC, 2001), and on the earth crust subsidence and glacier m... Based on the simulation with the Ocean-Atmosphere Coupled Model CCSM and Ocean Model POP under the green- house gas emission scenario of the IPCC SRES A2 (IPCC, 2001), and on the earth crust subsidence and glacier melting data, the relative sea level change is obtained along the coast of China in the 21 st century. Using the SRTM elevation data the submergence of coastal low land is calculated under the extreme water level with a 100-year retum period. The total flooding areas are 98.3× 10^3 and 104.9× 10^3 km2 for 2050 and 2080, respectively. For the three regions most vulnerable to extreme sea level rise, i.e., the coast of Bohai Bay, the Yangtze River Delta together with neighboring Jiangsu Province and northern Zhejiang Province, and the Pearl River Delta, the flooded areas are 5.0× 10^3, 64.1×10^3 and 15.3 × 10^3 km2 in 2050 and 5.2 × 10^3, 67.8×10^3 and 17.2 × 10^3 km2 in 2080, respectively. 展开更多
关键词 sea level rise submerged area extreme water level of 100-year recurrence 1985 National Height Datum
下载PDF
Influence of the Pacific Decadal Oscillation on regional sea level rise in the Pacific Ocean from 1993 to 2012 被引量:3
9
作者 司宗尚 徐永生 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第6期1414-1420,共7页
The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface h... The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising. 展开更多
关键词 Pacific Decadal Oscillation (PDO) regional sea level rise satellite altimeter Pacific Ocean
下载PDF
Sea level change under IPCC-A2 scenario in Bohai, Yellow, and East China Seas 被引量:3
10
作者 Chang-lin CHEN Jun-cheng ZUO +2 位作者 Mei-xiang CHEN Zhi-gang GAO C.-K.SHUM 《Water Science and Engineering》 EI CAS CSCD 2014年第4期446-456,共11页
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec... Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor. 展开更多
关键词 sea level rise steric sea level change IPCC-A2 scenario mass redistribution Bohai Yellow and East China seas
下载PDF
Adapting cities to sea level rise: A perspective from Chinese deltas 被引量:3
11
作者 CHENG He-Qin CHEN Ji-Yu 《Advances in Climate Change Research》 SCIE CSCD 2017年第2期130-136,共7页
In recent years, intensifying waterlogging, salt water intrusion, wetland loss, and ecosystem degradation in Chinese delta cities and adjacent regions have generated the pressing need to create an urban form that is s... In recent years, intensifying waterlogging, salt water intrusion, wetland loss, and ecosystem degradation in Chinese delta cities and adjacent regions have generated the pressing need to create an urban form that is suited to both current and future climates incorporating sea level rise. However, adaptation planning uptake is slow. This is particularly unfortunate because patterns of urban form interact with mean sea level rise (MSLR) in ways that reduce or intensify its impact. There are currently two main barriers that are significant in arresting the implementation of adaptation planning with reference to the MSLR projections composed of geomorphologic MSLR projections and eustatic MSLR projections from global climate warming, and making a comprehensive risk assessment of MSLR projections. The present review shows recent progresses in mapping MSLR projections and their risk assessment approaches on Chinese delta cities, and then a perspective of adapting these cities to MSLR projections as following six aspects. 1) The geomorphologic MSLR projections are contributed by the natural tectonic subsidence projections and the MSLR projections by anthropogenic geomorphologic change. The former needs to be updated in a global framework. The latter is accumulated by land subsidence from underground water depletion, water level fall caused by the erosion of riverbeds from a sediment supply decline attributed to the construction of watershed dams, artificial sand excavation, water level raise by engineering projects including land reclamation, deep waterway regulation, and fresh water reservoirs. 2) Controlling MSLR projections by anthropogenic geomorphologic changes. 3) The IPCC AR5 RCPs MSLRs scenarios are expected to be projected to the local eustatic MSLR projections on the Chinese deltas. 4) The MSLR projections need to be matched to a local elevation datum. 5) Modeling approaches of regional river-sea numerical with semi- analytical hydrodynamics, estuarine channel network, system dynamics and adaptation points are perspective. 6) Adaptation planning to MSLR projections requires a comprehensive risk assessment of the risk of flood, fresh water supply shortage, coastal erosion, wetland loss, siltation of ports and waterway in Chinese delta cities and adjacent regions. 展开更多
关键词 Mean sea level rise projections Natural tectonic subsidence Climate warming Local elevation datum Anthropogenic geomorphologic change Adaptation tipping point
下载PDF
Adaptation strategy for sea level rise in vulnerable areasalong China's coast 被引量:3
12
作者 Du Bilan, Zhang Jinwen (China Institute of Marine Affairs, State Oceanic Administration, Beijing 100860, China National Marine Data and Information Service, Tianjin 300171, China) 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2000年第4期1-16,共16页
It can be seen from the calculation that the vulnerable area along China's coast in which the elevation is less than 5 m, is 143 900 km2, accounting for about 11. 3% of the total area of the 11 coastal provinces, ... It can be seen from the calculation that the vulnerable area along China's coast in which the elevation is less than 5 m, is 143 900 km2, accounting for about 11. 3% of the total area of the 11 coastal provinces, municipalities and autonomous regions. These areas are threatened to varying extent by sea level rise. According to prediction, the relative sea level rise (including global sea level rise caused by climate change and local relative as level rise caused by vertical crust movement and ground subsidence) along China's coast will be 4~16 cm by the year 2030 with the optimum estimated value of 6~14cm. It will be 9~26 cm by the year 2050 with the optimum estimated value of 12-23 cm. And it will be 31-74 cm by the year 2100 with the optimum estimated value of 47~65 cm. The calcuation result shows that the percentage of the cost for up-grading (heightening and consolidating) sea dykes/walls in adaptation strategy in the losses of submerged areas varies from area to area: 6. 9% in the Zhujiang (Pearl) River Deta, 1. 3% ~24. 6% in the Changjiang (Yangtze) River Delta, and 0. 9%~2. 0% in the Huanghe River Delta. 展开更多
关键词 Adaptation strategy for sea level rise vulnerable areas along China's coast submerged areas
下载PDF
Responses of estuarine salinity and transport processes to sea level rise in the Zhujiang(Pearl River) Estuary 被引量:6
13
作者 CHEN Yuxiang ZUO Juncheng +2 位作者 ZOU Huazhi ZHANG Min ZHANG Kairong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第5期38-48,共11页
Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st cent... Understanding the changes of hydrodynamics in estuaries with respect to magnitude of sea level rise is important to understand the changes of transport process. Based on prediction of sea level rise over the 21st century, the Zhujiang(Pearl River) Estuary was chosen as a prototype to study the responses of the estuary to potential sea level rise. The numerical model results show that the average salt content, saltwater intrusion distance, and stratification will increase as the sea level rises. The changes of these parameters have obvious seasonal variations. The salt content in the Lingdingyang shows more increase in April and October(the transition periods). The saltwater intrusion distance has larger increase during the low-flow periods than during the highflow periods in the Lingdingyang. The result is just the opposite in Modaomen. The stratification and its increase are larger during the low-flow periods than during the high-flow periods in Lingdingyang. The response results of transport processes to sea level rise demonstrate that:(1) The time of vertical transport has pronounced increase.The increased tidal range and currents would reinforce the vertical mixing, but the increased stratification would weaken the vertical exchange. The impact of stratification changes overwhelms the impact of tidal changes. It would be more difficult for the surface water to reach the bottom.(2) The lengthways estuarine circulation would be strengthened. Both the offshore surface residual current and inshore bottom residual current will be enhanced.The whole meridional resident flow along the transect of the Lingdingyang would be weakened. These phenomena are caused by the decrease of water surface slope(WWS) and the change of static pressure with the increase of water depth under sea level rise. 展开更多
关键词 sea level rise salinity stratification transport process Zhujiang Estuary
下载PDF
Why would sea-level rise for global warming and polar ice-melt? 被引量:1
14
作者 Aftab Alam Khan 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期481-494,共14页
Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC.However, other cli... Two major causes of global sea level rise such as thermal expansion of the oceans and the loss of landbased ice for increased melting have been claimed by some researchers and recognized by the IPCC.However, other climate threat investigators revealed that atmosphere-ocean modeling is an imperfect representation, paleo-data consist of proxy climate information with ambiguities, and modern observations are limited in scope and accuracy. It is revealed that global warming and polar ice-melt although a reality would not contribute to any sea level rise. Floating-ice of the polar region on melting would reoccupy same displaced volume by floating ice-sheets. Land-ice cover in the polar region on melting can reduce load from the crust to activate elastic rebound that would raise land for its isostatic equilibrium.Such characteristics would not contribute to sea level rise. Equatorial bulge, polar flattening, elevation difference of the spheroidal surface between equator and pole with lower in the pole, strong gravity attraction of the polar region and week gravity attraction of the equatorial region, all these phenomena would play dominant role in preventing sea level rise. Palaeo-sea level rise and fall in macro-scale(10-100 m or so) were related to marine transgression and regression in addition to other geologic events like converging and diverging plate tectonics, orogenic uplift of the collision margin, basin subsidence of the extensional crust, volcanic activities in the oceanic region, prograding delta buildup, ocean floor height change and sub-marine mass avalanche. This study also reveals that geophysical shape, gravity attraction and the centrifugal force of spinning and rotation of the earth would continue acting against sea level rise. 展开更多
关键词 Global warming Polar ice-melt Equatorial bulge Polar flattening Geologic events sea level rise
下载PDF
Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels 被引量:1
15
作者 Jiahui Chen Min Gao +2 位作者 Guangcheng Chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第8期78-86,共9页
Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks... Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR. 展开更多
关键词 sea level rise vegetation biomass organic carbon stock COMPONENT mangrove forest Kandelia obovata
下载PDF
IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY 被引量:1
16
作者 Yang Guishan 《Chinese Geographical Science》 SCIE CSCD 1992年第1期31-42,共12页
Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangt... Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend. 展开更多
关键词 sea level rise salt water intrusion chlonnity the Changjiang River estuary
下载PDF
Statistical Modeling and Trend Detection of Extreme Sea Level Records in the Pearl River Estuary 被引量:1
17
作者 Weiwen WANG Wen ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第3期383-396,共14页
Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two... Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two tide gauge stations in Macao and Hong Kong. Extremes in the original sea level records (daily higher high water heights) and in tidal residuals with and without the 18.6-year nodal modulation are investigated separately. Thresholds for defining extreme sea levels are calibrated based on extreme value theory. Extreme events are then modeled by peaks-over-threshold models. The model applied to extremes in original sea level records does not include modeling of their durations, while a geometric distribution is added to model the duration of extremes in tidal residuals. Realistic modeling results are recommended in all stationary models. Parametric trends of extreme sea level records are then introduced to nonstationary models through a generalized linear model framework. The result shows that, in recent decades, since the 1960s, no significant trends can be found in any type of extreme at any station, which may be related to a reduction in the influence of tropical cyclones in the region. For the longer-term record since the 1920s at Macao, a regime shift of tidal amplitudes around the 1970s may partially explain the diverse trend of extremes in original sea level records and tidal residuals. 展开更多
关键词 sea level rise extreme climate change extreme value theory Pearl River Estuary
下载PDF
The effects of mean sea level rise and strengthened winds on extreme sea levels in the Baltic Sea 被引量:1
18
作者 Magnus Hieronymus Christian Dieterich +1 位作者 Helén Andersson Robinson Hordoir 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期366-371,I0003,共7页
Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea... Mean sea level rise and climatological wind speed changes occur as part of the ongoing climate change and future projections of both variables are still highly uncertain. Here the Baltic Sea’s response in extreme sea levels to perturbations in mean sea level and wind speeds is investigated in a series of simulations with a newly developed storm surge model based on the nucleus for European modeling of the ocean(NEMO)-Nordic. A simple linear model with only two tunable parameters is found to capture the changes in the return levels extremely well. The response to mean sea level rise is linear and nearly spatially uniform, meaning that a mean sea level rise of 1 m increases the return levels by a equal amount everywhere. The response to wind speed perturbations is more complicated and return levels are found to increase more where they are already high. This behaviour is alarming as it suggests that already flooding prone regions like the Gulf of Finland will be disproportionally adversely affected in a future windier climate. 展开更多
关键词 Extreme sea levels sea level rise Wind speeds Baltic sea
下载PDF
Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades 被引量:2
19
作者 Shen Wenbin Shen Ziyu +1 位作者 Sun Rong Barkin Yuri 《Geodesy and Geodynamics》 2015年第4期248-252,共5页
According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of ... According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained. 展开更多
关键词 ITRF2008 coordinates Ice melting Thermal expansion Earth expansion sea level rise (SLR)Space-geodetic data Velocities altimetry Earth's solid surface
下载PDF
Counteracting the Effects of Sea Level Rise in Southeast Florida 被引量:1
20
作者 F. Bloetscher B.N. Heimlich T. Romah 《Journal of Environmental Science and Engineering》 2011年第11期1507-1525,共19页
Over the past 100 years, worldwide surface temperatures have increased at an unprecedented rate, contributing to warming of the oceans, melting ice fields and glaciers, and other adverse climatic effects. Southeast Fl... Over the past 100 years, worldwide surface temperatures have increased at an unprecedented rate, contributing to warming of the oceans, melting ice fields and glaciers, and other adverse climatic effects. Southeast Florida's vulnerability derives from its geographic location, low elevation, porous geology, unusual ground and surface water hydrology, subtropical weather patterns, and proximity to the Atlantic Ocean. The region is especially susceptible to sea level rise. After several millennia of stable sea levels prior to the 20th century, sea levels have been rising at accelerating rates due to thermal expansion of the oceans and from land-based ice melt The Everglades ecosystem and the water supplies for southeast Florida are particularly vulnerable as neither can be protected without significant expenditures of public dollars, and even these efforts may not prove to be successful. New approaches may be required to improve the resilience and prolong the sustainability of the region's water resources and ecosystem. The efforts to adapt to sea level changes in both the urban area and ecosystem as outlined herein are date and incident based-climate changes may occur earlier or later so instead of spending limited public dollars early, expenditures can be adjusted given future information. 展开更多
关键词 sea level rise water supply EVERGLADES
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部