期刊文献+
共找到1,661篇文章
< 1 2 84 >
每页显示 20 50 100
Sealing mechanism of magnetic fluids 被引量:4
1
作者 郭楚文 封士彩 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期522-525,共4页
Sealing is one of the most successful apphcatious of magnetic fluids. However, the sealing pressure difference is not satisfactory. This paper theoretically analyzes the mechanism of magnetic fluids sealing. Main fact... Sealing is one of the most successful apphcatious of magnetic fluids. However, the sealing pressure difference is not satisfactory. This paper theoretically analyzes the mechanism of magnetic fluids sealing. Main factors that have significant effects on the sealing ability include viscous stress on the interracial surface, magnetic surface tension, and the shape of the interracial surface. The sealing pressure with magnetic fluids decreases with increase of rotational speed. Experiments were carried out to study the stability of the interface between magnetic fluids and water. It has been shown that stability of the interface will be damaged by washing of water when the relative flow between water and magnetic fluid becomes turbulent. 展开更多
关键词 magnetic surface tension magnetic fluids sealing INTERFACE stability.
下载PDF
Numerical Analysis of Magnetic Fluid Sealing Performance 被引量:3
2
作者 ZHAO Meng ZOU Ji-Bin XU Yong-Xiang 《Journal of China University of Mining and Technology》 EI 2006年第1期53-56,共4页
The sealing performance of magnetic fluid is related to the magnetic fluid itself. Many factors can influence the magnetic field and the seal pressure differences of magnetic fluid seals, such as the sealing gap, the ... The sealing performance of magnetic fluid is related to the magnetic fluid itself. Many factors can influence the magnetic field and the seal pressure differences of magnetic fluid seals, such as the sealing gap, the shaft eccentricity, the shaft diameter, the volume of the magnetic fluid and the centrifugal force. These factors are analyzed by numerical computation. When the seal material and structure are the same, the seal pressure difference is directly proportional to the magnetic field intensity and the saturation magnetization of the magnetic fluid. The sealing performance of the magnetic fluid will reduce with the increase of the sealing gap and shaft eccentricity. The sealing performance will increase with the volume of the magnetic fluid and decrease with the increase of the shaft diameter taking gravity into account. The increase of the shaft diameter is the same as the reduction of the volume of the magnetic fluid. The magnetic fluid cross-section can change because of the centrifugal force. Some improvements can reducc the influence of the centrifugal force. The centrifugal force can be utilized to improve the sealing performance. 展开更多
关键词 magnetic fluid sealing performance numerical computation
下载PDF
Contact performance analysis of pressure controller's sealing interface in deep in-situ pressure-preserved coring system 被引量:1
3
作者 Jia-Nan Li Jun Wang +5 位作者 Yun-Qi Hu Zhen-Xi You Meng Xu Ying-Wei Wang Zu-Jie Zou Qi-Yue Kang 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1334-1346,共13页
The sealing performance of contact interfaces plays the most important role in the design and operation of the in-situ pressure-preserved coring system.To meet the demand of ultra-high pressure-retained coring for oil... The sealing performance of contact interfaces plays the most important role in the design and operation of the in-situ pressure-preserved coring system.To meet the demand of ultra-high pressure-retained coring for oil and gas exploration in deep reservoirs,a quantitative analysis of the contact mechanical behavior of the pressure controller was performed.Based on the micro-contact theory of rough surfaces,a three-dimensional numerical model of the rough contact interface between the valve cover and the valve seat was constructed,and the micro-contact behavior of the metal contact surfaces was comprehensively studied.The results show that the actual contact area of the valve interface increases with the increase of surface roughness before the critical contact point,but decreases after that.Compared with the real contact model with double rough surfaces,although the simplified hard-contact model with a single rough surface can reflect the micro-contact behavior of the rough surface to a certain extent,it cannot truly reveal the microchannel morphology between the sealing interfaces under pressure.Therefore,the realistic double-rough-surface model should be recommended to evaluate the sealing performance of coring tools,particularly for high pressure conditions.The material properties of valves have a significant effect on the contact characteristics of rough surfaces,which suggested that the actual contact area decreases with the increase of the elastic modulus of the contact material under the same loading conditions.The knowledge of this work could help to enhance the seal design of pressure controllers for in-situ pressure-preserved coring. 展开更多
关键词 In-situ pressure-preserved coring Metal seal Rough surface Micro contact
下载PDF
Experimental study on a magnetofluid sealing liquid for propeller shaft
4
作者 ZHAO Chang-fa, SUN Rong-hua, ZHENG Jin-xing School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China 《Journal of Marine Science and Application》 2003年第1期66-70,共5页
The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe 3O 4 was successfully yielded, and an oil-base as a working carrier an... The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe 3O 4 was successfully yielded, and an oil-base as a working carrier and dispers ing agent was determined. The preparation process of the magnetic fluid and prescription of the oil-base magnetic fluid were discussed. The simulation experimental rig of magnetic fluid sealing for propeller shaft was designed. The sealing ability experiment was conducted and results were analyzed. The pressure of sealing is up to 2 MPa. 展开更多
关键词 magnetic fluid sealing ability propeller shaft
下载PDF
Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh 被引量:1
5
作者 张学伟 李强 吕梦柔 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期253-257,共5页
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m... In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation. 展开更多
关键词 two-phase flow SUPERCAVITATION sealing device computational fluid dynamics(CFD) dynamic mech
下载PDF
Thermal Fluid-Solid Interaction Model and Experimental Validation for Hydrostatic Mechanical Face Seals 被引量:10
6
作者 HUANG Weifeng LIAO Chuanjun +3 位作者 LIU Xiangfeng SUO Shuangfu LIU Ying WANG Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期949-957,共9页
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ... Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments. 展开更多
关键词 mechanical face seal HYDROSTATIC thermal fluid–solid interaction EXPERIMENT
下载PDF
Experimental Investigation of the Sealing Performance of Honeycomb Seals 被引量:7
7
作者 何立东 袁新 +1 位作者 金琰 诸振友 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期13-17,共5页
The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It ... The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It has been found that the honeycomb seal leakage during a rotor speed of 6000 r/min decreases by about 4.8 percent as compared with that during a rotor speed of 0 r/min. At a radial clearance of 0.12 mm the honeycomb seal with a cell size of 1.6 mm enjoys the best sealing performance. The leakage flow of the labyrinth seal with a radial clearance of 0.06 mm is smaller than that of the honeycomb seals. 展开更多
关键词 Leakage (fluid) PERFORMANCE Rotors sealing (closing)
下载PDF
New technology of determining coalbed gas content by reversion seal coring 被引量:11
8
《Journal of Coal Science & Engineering(China)》 2012年第1期35-38,共4页
The key of the direct method of determining coalbed gas content is how to shorten the coal core exposure time in the sampling progress and reduce measuring error of gas content which comes from the calculation of losi... The key of the direct method of determining coalbed gas content is how to shorten the coal core exposure time in the sampling progress and reduce measuring error of gas content which comes from the calculation of losing gas content. The coring tests were carried out in No.24 drilling field of 715 floor gateway in Qinan Coal Mine by using traditional drill core bar- rel sampler and self-designed reversion seal coring equipment. The losing gas content was calculated by power functional method, and the gas content of two coring methods was determined, respectively. Results show that, compared with traditional drill core barrel sampling, the newly seal coring equipment can significantly shorten the coal core exposure time, the 30 min desorption gas content increases obviously, the calculation of losing gas content reduces by 56.99%, the desorption gas content in normal atmosphere increases by 113.24%, and the determining value of gas content increases by 10.06%. The new technol- ogy has much higher accuracy, and it is worthwhile to be popularized. 展开更多
关键词 gas content seal coring exposure time losing gas content
下载PDF
Motion State Analysis and Seal Ability Study on the Magnetic Fluid Seal of Reciprocating Shaft 被引量:5
9
作者 LI De-cai HONG Jian-ping +1 位作者 YANG Qing-xin WANG Xiu-ring 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第2期115-120,共6页
The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from gen... The authors have studied the motion mechanism of the magnetic fluid in a reciprocating seal gap,on the basis of which the authors obtain an anti pressure formula of the reciprocating shaft magnetic fluid seal from general Navier Stokes equation.In order to verify the correctness of the anti pressure formula,the authors have calculated the magnetic field distribution of seal structure and have gotten the maximum still anti pressure.Finally,the authors have verified the influence of speed and stroke on the seal anti pressure. 展开更多
关键词 magnetic fluid reciprocating seal anti pressure
下载PDF
Coaxial Twin-shaft Magnetic Fluid Seals Applied in Vacuum Wafer-Handling Robot 被引量:2
10
作者 CONG Mingt WEN Haiying +1 位作者 DU yu DAI Penglei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期706-714,共9页
Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the ... Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot. 展开更多
关键词 magnetic fluid sealS coaxial twin-shaft magnetic field wafer handling robot
下载PDF
Characteristics of a magnetic fluid seal and its motion in an axial variable seal gap 被引量:6
11
作者 QIAN Ji-guo YANG Zhi-yi 《Journal of China University of Mining and Technology》 EI 2008年第4期634-636,共3页
With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was con- structed, and the solution to the equations of the model was deduced. The characteristics of a magnet... With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was con- structed, and the solution to the equations of the model was deduced. The characteristics of a magnetic fluid seal and its motion, including the speed and pressure distribution, and the seal capacity of a magnetic fluid rotating seal were systematically described. The factors affecting seal capacity and ways to improve seal capacity based on the hydrodynamic model are discussed. The basic condition for dynamic seal availability is presented. The rotating speed and radius of the shafts should be decreased. The work can provide proof of a seal design or suggest ways to improve the seal capacity of magnetic fluid seals. 展开更多
关键词 CHARACTERISTICS hydrodynamic model magnetic fluid seal axial variable gap
下载PDF
Earth's deformation due to the dynamical perturbations of the fluid outer core 被引量:2
12
作者 XU Jian-qiao +3 位作者 (徐建桥) SUN He-ping (孙和平) 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第4期414-424,共11页
The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical ... The elasto-gravitational deformation response of the Earths solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earths deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earths surface, CMB and ICB, respectively. The characteristics of the Earths deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earths fluid outer core. 展开更多
关键词 dynamical effect of the fluid outer core boundaries of the fluid outer core internal load Love
下载PDF
Effect and sensitivity analysis of the rotational speed on the fluid-induced force characteristics of the straight-through labyrinth gas seal 被引量:1
13
作者 王庆峰 He Lidong 《High Technology Letters》 EI CAS 2018年第1期62-74,共13页
The effects of the rotational speed on the fluid-induced force characteristics of a straight-through labyrinth gas seal( STLGS) are numerically investigated using the steady computational fluid dynamics( CFD) method b... The effects of the rotational speed on the fluid-induced force characteristics of a straight-through labyrinth gas seal( STLGS) are numerically investigated using the steady computational fluid dynamics( CFD) method based on a three-dimensional model of the STLGS. The fluid-induced force characteristics of the STLGS for five rotational speeds at a pressure drop of △P = 5000 Pa with and without eccentricity are computed. The grid density analysis ensures the accuracy of the present steady-CFD method. The effect and sensitivity analysis show that the changes in rotational speed affect the pressure forces,viscous forces and total pressure distributions on the rotor surface,velocity streamlines,leakage flow rates,and maximum flow velocities. The results indicate that the rotational speed inhibits the pressure forces,leakage flow rates and maximum flow velocities and promotes the viscous forces and total pressure on the rotor surface. 展开更多
关键词 LABYRINTH seal fluid-induced FORCE ROTATIONAL SPEED COMPUTATIONAL fluid dynam-ics (CFD) sensitivity analysis
下载PDF
FORCED-AIR WARMING AND FLUID WARMING MINIMIZE CORE HYPOTHERMIA DURING ABDOMINAL SURGERY 被引量:1
14
作者 Jing Zhao Ai-lun Luo Li Xu Yu-guang Huang 《Chinese Medical Sciences Journal》 CAS CSCD 2005年第4期261-264, ,共4页
Objective To evaluate the effect of intraoperative combined forced-air warming and fluid warming system on patient's core temperature, blood loss, transfusion demand, extubation time, and incidence of postoperative s... Objective To evaluate the effect of intraoperative combined forced-air warming and fluid warming system on patient's core temperature, blood loss, transfusion demand, extubation time, and incidence of postoperative shivering. Mothods Forty patients with American Society of Anesthesiologists physical status I and II, aged 18-70 years, scheduled for elective abdominal surgery were randomly assigned to receive intraoperative warming from a forced-air blanket and fluid warming system or conventional cotton blanket, 20 in each group. The core temperature was recorded every 20 minutes during the operation, as well as the blood loss, blood transfusion, extubation time, and incidence of postoperative shivering. Results The core temperature at the end of the surgery in the warming group was significantly different from that in the control group (36.4±0.4℃ vs. 35.3±0.5℃, P〈0.001). Application of intraoperative warming significantly shortened the time between the end of the surgery and extubation (P〈0.01). Postoperative shivering occurred in 30% of the patients in the control group compared to no patient in the warming group (P 〈0.01). Conclusion Active warming with air-forced blanket and fluid warming system provides sufficient heat to prevent hypothermia during abdominal surgery. 展开更多
关键词 forced-air warming fluid warming core temperature
下载PDF
A New Design of Magnetic Fluid Seal for Liquids 被引量:1
15
作者 LIU Tong-gang YANG Zhi-yi 《Journal of China University of Mining and Technology》 2005年第4期366-369,共4页
Direct contract between the sealed liquid and the magnetic fluid in a dynamic system under magnetic field may lead to an unstable interface, consequently, break down the seal. Aiming at this problem, a new magnetic fl... Direct contract between the sealed liquid and the magnetic fluid in a dynamic system under magnetic field may lead to an unstable interface, consequently, break down the seal. Aiming at this problem, a new magnetic fluid seal (MFS) was developed. In this new MFS, a soft iron bushing with high permeability was introduced on the shaft and nonferrous shields were installed beside the bushing and the pole pieces. The parameters of the bushing and the shields were optimized in a seal simulation facility The results show that the bushing with a thickness of 7 mm and shields with a width of 8 mm are best for sealing a shaft 20 mm in diameter. The MFS designed based on the optimum parameters shows good performance and long life span for sealing lubricating oil. 展开更多
关键词 magnetic fluid DESIGN sealing liquid parameter optimization
下载PDF
All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding 被引量:3
16
作者 陈耀飞 韩群 刘铁根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期315-320,共6页
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a... An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator. 展开更多
关键词 optical fiber optical modulator no-core fiber magnetic fluid
下载PDF
Fluid-solid Interaction Model for Hydraulic Reciprocating O-ring Seals 被引量:11
17
作者 LIAO Chuanjun HUANG Weifeng +2 位作者 WANG Yuming SUO Shuangfu LIU Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期85-94,共10页
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On... Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals. 展开更多
关键词 reciprocating O-ring seal elastohydrodynamic lubrication finite-element method fluid-solid interaction mixed lubrication SRV friction and wear tester
下载PDF
Effects of Four Types of Pre-swirls on the Leakage, Flow Field, and Fluid-Induced Force of the Rotary Straight-through Labyrinth Gas Seal 被引量:2
18
作者 Qingfeng Wang Lidong He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期119-133,共15页
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri... The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research. 展开更多
关键词 ROTARY straight-through LABYRINTH gas seal PRE-SWIRL LEAKAGE Flow field fluid-induced FORCE
下载PDF
The axisymmetric long-wave interfacial stability of core-annular flow of power-law fluid with surfactant 被引量:1
19
作者 Xue-Wei Sun Jie Peng Ke-Qin Zhu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期24-33,共10页
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. ... The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable. 展开更多
关键词 Core-annular flow. Power-law fluid. Interfacial surfactant Long-wave stability
下载PDF
Numerical and experimental studies of flow field in hydrocyclone with air core 被引量:12
20
作者 崔宝玉 魏德洲 +2 位作者 高淑玲 刘文刚 Yu-qing FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2642-2649,共8页
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res... For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities. 展开更多
关键词 HYDROCYCLONE computational fluid dynamics particle image velocimetry flow field air core
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部