An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over...An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.展开更多
Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance che...Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance chemical struc-ture database based on MYSQL engines,named MYDB.More than 160000 metal-organic frameworks(MOFs)have been collected and stored by using new retrieval algorithms for effcient searching and recom-mendation.The evaluations results show that MYDB could realize fast and effcient key-word searching against millions of records and provide real-time recommendations for similar structures.Combining machine learning method and materials database,we developed an adsorption model to determine the adsorption capacitor of metal-organic frameworks to-ward argon and hydrogen under certain conditions.We expect that MYDB together with the developed machine learning techniques could support large-scale,low-cost,and highly convenient structural research towards accelerating discovery of materials with target func-tionalities in the eld of computational materials research.展开更多
Neural Machine Translation(NMT)is an end-to-end learning approach for automated translation,overcoming the weaknesses of conventional phrase-based translation systems.Although NMT based systems have gained their popul...Neural Machine Translation(NMT)is an end-to-end learning approach for automated translation,overcoming the weaknesses of conventional phrase-based translation systems.Although NMT based systems have gained their popularity in commercial translation applications,there is still plenty of room for improvement.Being the most popular search algorithm in NMT,beam search is vital to the translation result.However,traditional beam search can produce duplicate or missing translation due to its target sequence selection strategy.Aiming to alleviate this problem,this paper proposed neural machine translation improvements based on a novel beam search evaluation function.And we use reinforcement learning to train a translation evaluation system to select better candidate words for generating translations.In the experiments,we conducted extensive experiments to evaluate our methods.CASIA corpus and the 1,000,000 pairs of bilingual corpora of NiuTrans are used in our experiments.The experiment results prove that the proposed methods can effectively improve the English to Chinese translation quality.展开更多
Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment ...Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment methodologies over the past decades,and has experienced three generations:quant 1.0,trading by mathematical modeling to discover mis-priced assets in markets;quant 2.0,shifting the quant research pipeline from small“strategy workshops”to large“alpha factories”;quant 3.0,applying deep learning techniques to discover complex nonlinear pricing rules.Despite its advantage in prediction,deep learning relies on extremely large data volume and labor-intensive tuning of“black-box”neural network models.To address these limitations,in this paper,we introduce quant 4.0 and provide an engineering perspective for next-generation quant.Quant 4.0 has three key differentiating components.First,automated artificial intelligence(AI)changes the quant pipeline from traditional hand-crafted modeling to state-of-the-art automated modeling and employs the philosophy of“algorithm produces algorithm,model builds model,and eventually AI creates AI.”Second,explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black boxes,and explains complicated and hidden risk exposures.Third,knowledge-driven AI supplements data-driven AI such as deep learning and incorporates prior knowledge into modeling to improve investment decisions,in particular for quantitative value investing.Putting all these together,we discuss how to build a system that practices the quant 4.0 concept.We also discuss the application of large language models in quantitative finance.Finally,we propose 10 challenging research problems for quant technology,and discuss potential solutions,research directions,and future trends.展开更多
Reinforced concrete(RC)flat slabs,a popular choice in construction due to their flexibility,are susceptible to sudden and brittle punching shear failure.Existing design methods often exhibit significant bias and varia...Reinforced concrete(RC)flat slabs,a popular choice in construction due to their flexibility,are susceptible to sudden and brittle punching shear failure.Existing design methods often exhibit significant bias and variability.Accurate estimation of punching shear strength in RC flat slabs is crucial for effective concrete structure design and management.This study introduces a novel computation method,the jellyfish-least square support vector machine(JS-LSSVR)hybrid model,to predict punching shear strength.By combining machine learning(LSSVR)with jellyfish swarm(JS)intelligence,this hybrid model ensures precise and reliable predictions.The model’s development utilizes a real-world experimental data set.Comparison with seven established optimizers,including artificial bee colony(ABC),differential evolution(DE),genetic algorithm(GA),and others,as well as existing machine learning(ML)-based models and design codes,validates the superiority of the JS-LSSVR hybrid model.This innovative approach significantly enhances prediction accuracy,providing valuable support for civil engineers in estimating RC flat slab punching shear strength.展开更多
文摘An intrusion detection system(IDS)becomes an important tool for ensuring security in the network.In recent times,machine learning(ML)and deep learning(DL)models can be applied for the identification of intrusions over the network effectively.To resolve the security issues,this paper presents a new Binary Butterfly Optimization algorithm based on Feature Selection with DRL technique,called BBOFS-DRL for intrusion detection.The proposed BBOFSDRL model mainly accomplishes the recognition of intrusions in the network.To attain this,the BBOFS-DRL model initially designs the BBOFS algorithm based on the traditional butterfly optimization algorithm(BOA)to elect feature subsets.Besides,DRL model is employed for the proper identification and classification of intrusions that exist in the network.Furthermore,beetle antenna search(BAS)technique is applied to tune the DRL parameters for enhanced intrusion detection efficiency.For ensuring the superior intrusion detection outcomes of the BBOFS-DRL model,a wide-ranging experimental analysis is performed against benchmark dataset.The simulation results reported the supremacy of the BBOFS-DRL model over its recent state of art approaches.
基金This work was supported by the National Natu-ral Science Foundation of China(No.21573204 and No.21421063),Fundamental Research Funds for the Central Universities,National Program for Support of Top-notch Young Professional,CAS Interdisciplinary Innovation Team,and Super Computer Center of USTCSCC and SCCAS.
文摘Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance chemical struc-ture database based on MYSQL engines,named MYDB.More than 160000 metal-organic frameworks(MOFs)have been collected and stored by using new retrieval algorithms for effcient searching and recom-mendation.The evaluations results show that MYDB could realize fast and effcient key-word searching against millions of records and provide real-time recommendations for similar structures.Combining machine learning method and materials database,we developed an adsorption model to determine the adsorption capacitor of metal-organic frameworks to-ward argon and hydrogen under certain conditions.We expect that MYDB together with the developed machine learning techniques could support large-scale,low-cost,and highly convenient structural research towards accelerating discovery of materials with target func-tionalities in the eld of computational materials research.
基金This work is supported by the National Natural Science Foundation of China(61872231,61701297).
文摘Neural Machine Translation(NMT)is an end-to-end learning approach for automated translation,overcoming the weaknesses of conventional phrase-based translation systems.Although NMT based systems have gained their popularity in commercial translation applications,there is still plenty of room for improvement.Being the most popular search algorithm in NMT,beam search is vital to the translation result.However,traditional beam search can produce duplicate or missing translation due to its target sequence selection strategy.Aiming to alleviate this problem,this paper proposed neural machine translation improvements based on a novel beam search evaluation function.And we use reinforcement learning to train a translation evaluation system to select better candidate words for generating translations.In the experiments,we conducted extensive experiments to evaluate our methods.CASIA corpus and the 1,000,000 pairs of bilingual corpora of NiuTrans are used in our experiments.The experiment results prove that the proposed methods can effectively improve the English to Chinese translation quality.
文摘Quantitative investment(abbreviated as“quant”in this paper)is an interdisciplinary field combining financial engineering,computer science,mathematics,statistics,etc.Quant has become one of the mainstream investment methodologies over the past decades,and has experienced three generations:quant 1.0,trading by mathematical modeling to discover mis-priced assets in markets;quant 2.0,shifting the quant research pipeline from small“strategy workshops”to large“alpha factories”;quant 3.0,applying deep learning techniques to discover complex nonlinear pricing rules.Despite its advantage in prediction,deep learning relies on extremely large data volume and labor-intensive tuning of“black-box”neural network models.To address these limitations,in this paper,we introduce quant 4.0 and provide an engineering perspective for next-generation quant.Quant 4.0 has three key differentiating components.First,automated artificial intelligence(AI)changes the quant pipeline from traditional hand-crafted modeling to state-of-the-art automated modeling and employs the philosophy of“algorithm produces algorithm,model builds model,and eventually AI creates AI.”Second,explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black boxes,and explains complicated and hidden risk exposures.Third,knowledge-driven AI supplements data-driven AI such as deep learning and incorporates prior knowledge into modeling to improve investment decisions,in particular for quantitative value investing.Putting all these together,we discuss how to build a system that practices the quant 4.0 concept.We also discuss the application of large language models in quantitative finance.Finally,we propose 10 challenging research problems for quant technology,and discuss potential solutions,research directions,and future trends.
基金Acknowledgements This research was supported by the Research Program funded by Seoul National University of Science and Technology(SeoulTech).
文摘Reinforced concrete(RC)flat slabs,a popular choice in construction due to their flexibility,are susceptible to sudden and brittle punching shear failure.Existing design methods often exhibit significant bias and variability.Accurate estimation of punching shear strength in RC flat slabs is crucial for effective concrete structure design and management.This study introduces a novel computation method,the jellyfish-least square support vector machine(JS-LSSVR)hybrid model,to predict punching shear strength.By combining machine learning(LSSVR)with jellyfish swarm(JS)intelligence,this hybrid model ensures precise and reliable predictions.The model’s development utilizes a real-world experimental data set.Comparison with seven established optimizers,including artificial bee colony(ABC),differential evolution(DE),genetic algorithm(GA),and others,as well as existing machine learning(ML)-based models and design codes,validates the superiority of the JS-LSSVR hybrid model.This innovative approach significantly enhances prediction accuracy,providing valuable support for civil engineers in estimating RC flat slab punching shear strength.