Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the succ...Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.展开更多
In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to...In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios.This paper presents two binary variants of a Hunger Games Search Optimization(HGSO)algorithm based on V-and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.The proposed technique transforms the continuous HGSO into a binary variant using V-and S-shaped transfer functions(BHGSO-V and BHGSO-S).To validate the accuracy,16 famous UCI datasets are considered and compared with different state-of-the-art metaheuristic binary algorithms.The findings demonstrate that BHGSO-V achieves better performance in terms of the selected number of features,classification accuracy,run time,and fitness values than other state-of-the-art algorithms.The results demonstrate that the BHGSO-V algorithm can reduce dimensionality and choose the most helpful features for classification problems.The proposed BHGSO-V achieves 95%average classification accuracy for most of the datasets,and run time is less than 5 sec.for low and medium dimensional datasets and less than 10 sec for high dimensional datasets.展开更多
In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is...In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is an improved version of ADBS.By using the proposed methods,the visual watermark will be embedded into two halftone images separately,thus,the watermark can be revealed when these two halftone images are overlaid.Experimental results show that both methods can achieve excellent image visual quality and decoded visual patterns.展开更多
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no...This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.展开更多
Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting...Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.展开更多
Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end u...Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random var...We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.展开更多
Conventional proportional integral derivative(PID)controllers are being used in the industries for control purposes.It is very simple in design and low in cost but it has less capability to minimize the low frequency ...Conventional proportional integral derivative(PID)controllers are being used in the industries for control purposes.It is very simple in design and low in cost but it has less capability to minimize the low frequency noises of the systems.Therefore,in this study,a low pass filter has been introduced with the derivative input of the PID controller to minimize the noises and to improve the transient stability of the system.This paper focuses upon the stability improvement of a wind-diesel hybrid power system model(HPSM)using a static synchronous compensator(STATCOM)along with a secondary PID controller with derivative filter(PIDF).Under any load disturbances,the reactive power mismatch occurs in the HPSM that affects the system transient stability.STATCOM with PIDF controller is used to provide reactive power support and to improve stability of the HPSM.The controller parameters are also optimized by using soft computing technique for performance improvement.This paper proposes the effectiveness of symbiosis organisms search algorithm for optimization purpose.Binary coded genetic algorithm and gravitational search algorithm are used for the sake of comparison.展开更多
Searching is frequently used in computer software design. The research of searching algorithms is always in an important position and many algorithms have been advanced. It is realized that the searching algorithm bas...Searching is frequently used in computer software design. The research of searching algorithms is always in an important position and many algorithms have been advanced. It is realized that the searching algorithm based on data comparison has the expected complexity of at least O(N log N ) (The complexity means the running time to search N data in a file of N data, the following complexity has the same meaning). Famous computer scientist D. E. Knuth made analysis and comparison for searching algorithms, and came to the conclusion that the binary search has the least complexity of O(N log N). Data processed in comput-展开更多
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto...针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息.展开更多
基金This work was partially supported by the Key-Area Research and Development Program of Guangdong Province(2019B010136001,20190166)the Basic and Applied Basic Research Major Program for Guangdong Province(2019B030302002)the Science and Technology Planning Project of Guangdong Province LZC0023 and LZC0024.
文摘Radio frequency identification(RFID)has been widespread used in massive items tagged domains.However,tag collision increases both time and energy consumption of RFID network.Tag collision can seriously affect the success of tag identification.An efficient anti-collision protocol is very crucially in RFID system.In this paper,an improved binary search anti-collision protocol namely BRTP is proposed to cope with the tag collision concern,which introduces a Bi-response mechanism.In Bi-response mechanism,two groups of tags allowed to reply to the reader in the same slot.According to Bi-response mechanism,the BRTP strengthens the tag identification of RFID network by reducing the total number of queries and exchanged messages between the reader and tags.Both theoretical analysis and numerical results verify the effectiveness of the proposed BRTP in various performance metrics including the number of total slots,system efficiency,communication complexity and total identification time.The BRTP is suitable to be applied in passive RFID systems.
文摘In machine learning and data mining,feature selection(FS)is a traditional and complicated optimization problem.Since the run time increases exponentially,FS is treated as an NP-hard problem.The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios.This paper presents two binary variants of a Hunger Games Search Optimization(HGSO)algorithm based on V-and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset.The proposed technique transforms the continuous HGSO into a binary variant using V-and S-shaped transfer functions(BHGSO-V and BHGSO-S).To validate the accuracy,16 famous UCI datasets are considered and compared with different state-of-the-art metaheuristic binary algorithms.The findings demonstrate that BHGSO-V achieves better performance in terms of the selected number of features,classification accuracy,run time,and fitness values than other state-of-the-art algorithms.The results demonstrate that the BHGSO-V algorithm can reduce dimensionality and choose the most helpful features for classification problems.The proposed BHGSO-V achieves 95%average classification accuracy for most of the datasets,and run time is less than 5 sec.for low and medium dimensional datasets and less than 10 sec for high dimensional datasets.
文摘In this paper,two methods are proposed to embed visual watermark into direct binary search(DBS)halftone images,which are called Adjusted Direct Binary Search(ADBS)and Dual Adjusted Direct Binary Search(DADBS).DADBS is an improved version of ADBS.By using the proposed methods,the visual watermark will be embedded into two halftone images separately,thus,the watermark can be revealed when these two halftone images are overlaid.Experimental results show that both methods can achieve excellent image visual quality and decoded visual patterns.
文摘This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Graduate Student Innovation Foundation of Shanghai University(Grant No.SHUCX112167)
文摘Tree search is a widely used fundamental algorithm. Modern processors provide tremendous computing power by integrating multiple cores, each with a vector processing unit. This paper reviews some studies on exploiting single instruction multiple date (SIMD) capacity of processors to improve the performance of tree search, and proposes several improvement methods on reported SIMD tree search algorithms. Based on blocking tree structure, blocking for memory alignment and dynamic blocking prefetch are proposed to optimize the overhead of memory access. Furthermore, as a way of non-linear loop unrolling, the search branch unwinding shows that the number of branches can exceed the data width of SIMD instructions in the SIMD search algorithm. The experiments suggest that blocking optimized SIMD tree search algorithm can achieve 1.6 times response speed faster than the un-optimized algorithm.
文摘Multi-level searching is called Drill down search.Right now,no drill down search feature is available in the existing search engines like Google,Yahoo,Bing and Baidu.Drill down search is very much useful for the end user tofind the exact search results among the huge paginated search results.Higher level of drill down search with category based search feature leads to get the most accurate search results but it increases the number and size of thefile system.The purpose of this manuscript is to implement a big data storage reduction binaryfile system model for category based drill down search engine that offers fast multi-levelfiltering capability.The basic methodology of the proposed model stores the search engine data in the binaryfile system model.To verify the effectiveness of the proposedfile system model,5 million unique keyword data are stored into a binaryfile,thereby analysing the proposedfile system with efficiency.Some experimental results are also provided based on real data that show our storage model speed and superiority.Experiments demonstrated that ourfile system expansion ratio is constant and it reduces the disk storage space up to 30%with conventional database/file system and it also increases the search performance for any levels of search.To discuss deeply,the paper starts with the short introduction of drill down search followed by the discussion of important technologies used to implement big data storage reduction system in detail.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10671188)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX3-SYW-S02)the Special Foundation of University of Science and Technology of China
文摘We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.
文摘Conventional proportional integral derivative(PID)controllers are being used in the industries for control purposes.It is very simple in design and low in cost but it has less capability to minimize the low frequency noises of the systems.Therefore,in this study,a low pass filter has been introduced with the derivative input of the PID controller to minimize the noises and to improve the transient stability of the system.This paper focuses upon the stability improvement of a wind-diesel hybrid power system model(HPSM)using a static synchronous compensator(STATCOM)along with a secondary PID controller with derivative filter(PIDF).Under any load disturbances,the reactive power mismatch occurs in the HPSM that affects the system transient stability.STATCOM with PIDF controller is used to provide reactive power support and to improve stability of the HPSM.The controller parameters are also optimized by using soft computing technique for performance improvement.This paper proposes the effectiveness of symbiosis organisms search algorithm for optimization purpose.Binary coded genetic algorithm and gravitational search algorithm are used for the sake of comparison.
文摘Searching is frequently used in computer software design. The research of searching algorithms is always in an important position and many algorithms have been advanced. It is realized that the searching algorithm based on data comparison has the expected complexity of at least O(N log N ) (The complexity means the running time to search N data in a file of N data, the following complexity has the same meaning). Famous computer scientist D. E. Knuth made analysis and comparison for searching algorithms, and came to the conclusion that the binary search has the least complexity of O(N log N). Data processed in comput-
文摘针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息.