Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells ...Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells were infected with A/California/07/09 (H1N1) and A/GuangdongBaoan/51/08 (H1N1) respectively at the same MOI of 2 and collected at 2, 4, 8, and 24 h post infection (p.i.). Gene expression profiles of A549 cells were obtained using the 22 K Human Genome Oligo Array, and differentially expressed genes were analyzed at selected time points. Results Microarrays results indicated that both of the viruses suppressed host immune response related pathways including cytokine production while pandemic H1N1 virus displayed weaker suppression of host immune response than seasonal H1N1 virus. Observation on similar anti-apoptotic events such as activation of apoptosis inhibitor and down-regulation of key genes of apoptosis pathways in both infections showed that activities of promoting apoptosis were different in later stage of infection. Conclusion The immuno-suppression and anti-apoptosis events of pandemic H1N1 virus were similar to those seen by seasonal H1N1 virus. The pandemic H1N1 virus had an ability to inhibit biological pathways associated with cytokine responses, NK activation and macrophage recognition .展开更多
Highly pathogenic avian influenza(HPAI)H5N1 hemagglutinin clade 2.3.4.4b was detected in the United States in 2021.These HPAI viruses caused mortality events in poultry,wild birds,and wild mammals.On March 25,2024,HPA...Highly pathogenic avian influenza(HPAI)H5N1 hemagglutinin clade 2.3.4.4b was detected in the United States in 2021.These HPAI viruses caused mortality events in poultry,wild birds,and wild mammals.On March 25,2024,HPAI H5N1 clade 2.3.4.4b was confirmed in a dairy cow in Texas in response to a multi-state investigation into milk production losses.1 Over 200 positive herds were identified in 14 U.S.states.The case description included reduced feed intake and rumen motility in lactating cows,decreased milk production,and thick yellow milk.2,3 The diagnostic investigation revealed viral RNA in milk and mammary tissue with alveolar epithelial degeneration and necrosis and positive immunoreactivity of glandular epithelium.A single transmission event,likely from birds,was followed by limited local transmission and onward horizontal transmission of H5N1 clade 2.3.4.4b genotype B3.13.4 We sought to experimentally reproduce infection with genotype B3.13 in Holstein yearling heifers and lactating cows.Heifers were inoculated by aerosol respiratory route and cows by intramammary route.Clinical disease was mild in heifers,but infection was confirmed by virus detection,lesions,and seroconversion.Clinical disease in lactating cows included decreased rumen motility,changes to milk appearance,and production losses.Infection was confirmed by high levels of viral RNA detected in milk,virus isolation,lesions in mammary tissue,and seroconversion.This study provides the foundation to investigate additional routes of infection,pathogenesis,transmission,and intervention strategies.展开更多
[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the s...[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.展开更多
All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortalit...All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.展开更多
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mu...In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.展开更多
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in...Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.展开更多
Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purifie...Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purified influenza A virus H1N1 in vitro,viral integration and replication status of the cells were detected by RT-PCR assay,cell proliferation and apoptosis was determined by MTT method and flow cytometry,respectively.Associated protein expression was delected by Western blotting.Results:Agarose gel electrophoresis showed H1N1 virus can infect astrocytes and can be copied.MTT staining showed H1N1 virus infection can inhibit the proliferation of mouse astrocytes,which makes cell viability decreased significantly.Flow cytometry showed that the proportion of Annein V staining positive vascular endothelial cells in the influenza A virus group was significantly higher than that in the control group.Western blot analysis showed after24 h and 32 h of infection,there were cells caspase-3 protein and the expression of its active form(lysed caspase-3 protein)increased.The proportion of Bax/Bcl-2 also increased.Conclusions:Influenza A virus can infect human vascular endothelial cells and proliferation and it can induce apoptosis of endothelial cells.展开更多
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 t...Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.展开更多
Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, r...Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.展开更多
Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcu...Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcuma longa(C. longa),Gynostemma pentaphyllum, Kaempferia parviflora(K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin–Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection.Results: The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants,C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-a and IFN-b m RNA expressions, suggesting their roles in the inhibition of H5N1 virus replication.Conclusions: To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.展开更多
Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of e...Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.展开更多
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell cultu...A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.展开更多
基金supported by the National Basic Research Program of China (973 program: 2010CB534001)
文摘Objective To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. Methods A549 cells were infected with A/California/07/09 (H1N1) and A/GuangdongBaoan/51/08 (H1N1) respectively at the same MOI of 2 and collected at 2, 4, 8, and 24 h post infection (p.i.). Gene expression profiles of A549 cells were obtained using the 22 K Human Genome Oligo Array, and differentially expressed genes were analyzed at selected time points. Results Microarrays results indicated that both of the viruses suppressed host immune response related pathways including cytokine production while pandemic H1N1 virus displayed weaker suppression of host immune response than seasonal H1N1 virus. Observation on similar anti-apoptotic events such as activation of apoptosis inhibitor and down-regulation of key genes of apoptosis pathways in both infections showed that activities of promoting apoptosis were different in later stage of infection. Conclusion The immuno-suppression and anti-apoptosis events of pandemic H1N1 virus were similar to those seen by seasonal H1N1 virus. The pandemic H1N1 virus had an ability to inhibit biological pathways associated with cytokine responses, NK activation and macrophage recognition .
文摘Highly pathogenic avian influenza(HPAI)H5N1 hemagglutinin clade 2.3.4.4b was detected in the United States in 2021.These HPAI viruses caused mortality events in poultry,wild birds,and wild mammals.On March 25,2024,HPAI H5N1 clade 2.3.4.4b was confirmed in a dairy cow in Texas in response to a multi-state investigation into milk production losses.1 Over 200 positive herds were identified in 14 U.S.states.The case description included reduced feed intake and rumen motility in lactating cows,decreased milk production,and thick yellow milk.2,3 The diagnostic investigation revealed viral RNA in milk and mammary tissue with alveolar epithelial degeneration and necrosis and positive immunoreactivity of glandular epithelium.A single transmission event,likely from birds,was followed by limited local transmission and onward horizontal transmission of H5N1 clade 2.3.4.4b genotype B3.13.4 We sought to experimentally reproduce infection with genotype B3.13 in Holstein yearling heifers and lactating cows.Heifers were inoculated by aerosol respiratory route and cows by intramammary route.Clinical disease was mild in heifers,but infection was confirmed by virus detection,lesions,and seroconversion.Clinical disease in lactating cows included decreased rumen motility,changes to milk appearance,and production losses.Infection was confirmed by high levels of viral RNA detected in milk,virus isolation,lesions in mammary tissue,and seroconversion.This study provides the foundation to investigate additional routes of infection,pathogenesis,transmission,and intervention strategies.
基金Supported by Key Specific Program for Science and Technology of Guangdong Province (2008B020700003 A2007A020400006)~~
文摘[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.
基金Acknowledgments We thank Susan Watson for editing the manuscript and those in our laboratories who contributed to the data cited in this review. We also thank Ryo Takano for the preparation of figures. Research in HC's group is supported by the Ministry of Science and Technology, China (2004BA519A-57, 2006BAD06A05). Research in GFG's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523001 and 2006BAD06A01), the National Natural Science Foundation of China (NSFC, Grant #3059934, #30525010) and the US National Institutes of Health (U19 AI051915-05S1). Research in YS's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523006 and 2006BAD06A15), and the National Natural Science Foundation of China (NSFC, Grant #30599433). Research in YK's group is supported by National Institute of Allergy and Infectious Diseases Public Health Service research grants by CREST and ERATO (Japan Science and Technology Agency), and by grants-in-aid and a contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
文摘All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.
文摘In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2009434)the Innovation Platform for Public Health Emergency Preparedness and Response(NO.ZX201109)the Key Medical Talent Foundation of Jiangsu Province(RC2011084)
文摘Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-Hke H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.
文摘Objective:To investigate the effects of influenza A virus H1N1 infection on the proliferation and apoptosis of mouse astrocytes cells and its protein expression.Methods:After mouse astrocytes was infected with purified influenza A virus H1N1 in vitro,viral integration and replication status of the cells were detected by RT-PCR assay,cell proliferation and apoptosis was determined by MTT method and flow cytometry,respectively.Associated protein expression was delected by Western blotting.Results:Agarose gel electrophoresis showed H1N1 virus can infect astrocytes and can be copied.MTT staining showed H1N1 virus infection can inhibit the proliferation of mouse astrocytes,which makes cell viability decreased significantly.Flow cytometry showed that the proportion of Annein V staining positive vascular endothelial cells in the influenza A virus group was significantly higher than that in the control group.Western blot analysis showed after24 h and 32 h of infection,there were cells caspase-3 protein and the expression of its active form(lysed caspase-3 protein)increased.The proportion of Bax/Bcl-2 also increased.Conclusions:Influenza A virus can infect human vascular endothelial cells and proliferation and it can induce apoptosis of endothelial cells.
基金National Natural Science Foundation of China (30979144 and 81271821)
文摘Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.
基金supported by International Science and Technology Collaboration Program of China (2007DFA-30980)Program for Changjiang Scholars,Innovative Research Team in University (IRT0944)+1 种基金Natural Science Foundation of China (31070724)Special Fund for Marine Scientific Research in the Public Interest (201005024)
文摘Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance liquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid l/k/v-carrageenan (701/17k/13v-car- rabiose), EH was mainly t-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of t-carrageenan (12%). The relative molecular mass ofEW, EH and EA was 480, 580 and 510kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its ICso was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μgmL-1. The ICs0 of t-carrageenan EH was 366.4 μgmL1, whereas EA showed lower anti-H1N1 virus activity (IC50〉430μgmL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eueheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.
基金supported by the Young Researcher Award of Chiang Mai University grant number R000009357the CMU Mid-Career Research Fellowship Program,Chiang Mai University,Chiang Mai,Thailand
文摘Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcuma longa(C. longa),Gynostemma pentaphyllum, Kaempferia parviflora(K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin–Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection.Results: The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants,C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-a and IFN-b m RNA expressions, suggesting their roles in the inhibition of H5N1 virus replication.Conclusions: To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
基金supported by the General Program of the National Natural Science Foundation of China[No.31570162]the National Key Research Program[No.2016YFC1200200].
文摘Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.
基金The Ministry of Science and Technology of China (2010CB534005,2007FY210700, 2009ZX10004109)the National Natural Science Foundation of China (30970024,30900060)+2 种基金The National R&D Infrastructure and Facility Development Program of China under Grant No. BSDN2009-10 &18The Chinese Academy of Sciences (KSCX2-YW- N-065, KSCX2-YW-R-157, 158 and 159 INFO-115-C01-SDB3-01, INFO-115-C01-SDB4-21, IN-FO-115-D02, IN-FO- 115-C01-SDB2-02)
文摘A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome sequences. Sequence comparison revealed they shared a high degree of homology (96%-99%) with known epidemic strains (A/Califomia/04/2009(H1N1). Phylogenetic analysis showed that although the sequences were highly conserved, they clustered into a small number of groups with only a few distinct strains. Site analysis revealed three substitutions at loop 220 (221-228) of the HA receptor binding site in the 39 HA sequences: A/Hubei/86/2009 PKVRDQEG→PKVRDQEA, A/Zhejiang/08/2009 PKVRDQEG→PKVRDQER, A/Hubei/75/2009 PKVRDQEG→PKVRDQGG, the A/Hubei/75/2009 was isolated from an acute case, while the other two were from patients with mild symptoms. Other key sites such as 119, 274, 292 and 294 amino acids of NA protein,627 of PB2 protein were conserved. Meanwhile, all the M2 protein sequences possessed the Ser32Asn mutation, suggesting that these viruses were resistant to adamantanes. Comparison of these sequences with other H1N1 viruses collected from the NCBI database provides insight into H1N1 transmission and circulation patterns.