期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
GROWTH OF MONGOLIAN OAK
1
作者 赵惠勋 王传宽 刘滨辉 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1994年第1期10-17,共8页
The height fast growing period of oak seedling (Quercus mongolica) was between 25 to 30 years old but the diameter varied greatly. The maximum diurnal height increment of the investigated oak tree reached 3. 3 cm, but... The height fast growing period of oak seedling (Quercus mongolica) was between 25 to 30 years old but the diameter varied greatly. The maximum diurnal height increment of the investigated oak tree reached 3. 3 cm, but at daytime it was much greater than at night. The oak trees usually sprouted twice and even treble in the growing season. In natural oak stands. the volume rarely exceeded 200 m3/hm2 and the mean volume increment was only about 2 m3/hm2 展开更多
关键词 Mongolian oak Grand period of growth seasonal growth Diurnal height growth Stand growth
下载PDF
Precipitation Change and Agricultural Drought and Flood Degrees during Crop Growth Season in Binzhou City
2
作者 Cai Yongwei Ren Jiancheng 《Meteorological and Environmental Research》 CAS 2014年第3期46-48,共3页
[Objective]The research aimed to analyze precipitation change and agricultural drought and flood degrees during crop growth season in Binzhou.[Method]Based on monthly rainfall and average temperature data at Binzhou m... [Objective]The research aimed to analyze precipitation change and agricultural drought and flood degrees during crop growth season in Binzhou.[Method]Based on monthly rainfall and average temperature data at Binzhou meteorological observatory during March-November of1981-2010,by using linear regression,climatic tendency rate and dry-wet coefficient,precipitation change and agricultural drought and flood degrees during crop growth season of the past 30 years in Binzhou were analyzed from natural precipitation tendency change and satisfaction degree of agricultural water demand during crop growth season.[Result]In the past 30 years,precipitation during growth season in Binzhou presented increasing tendency.Spring,summer and autumn precipitation all increased somewhat,especially summer precipitation.Monthly average rainfall distribution was very uneven,and rainfall in July and August was more.In the past 30 years,average dry-wet coefficient K value during crop growth season in Binzhou was 0.60,it overall belonged to moderate drought climate type,and occurrence frequency of drought was 97%.It belonged to serious drought climate type in spring and autumn and light drought climate type in summer.Dry-wet coefficient presented rising tendency,illustrating that climate was developing toward wet direction.Seen from mean over the years,except humid in July,it was over light drought in other months.[Conclusion]Climate was overall arid during crop growth season in Binzhou,but precipitation somewhat increased in the past 30 years.Therefore,we suggested that artificial rainfall work should be enhanced. 展开更多
关键词 Crop growth season PRECIPITATION Drought and flood degrees Binzhou China
下载PDF
Root production, mortality and turnover in soil profiles as affected by clipping in a temperate grassland on the Loess Plateau 被引量:1
3
作者 Lin Wei Pengwei Yao +2 位作者 Guanghua Jing Xiefeng Ye Jimin Cheng 《Journal of Plant Ecology》 SCIE CSCD 2019年第6期1059-1072,共14页
Aims Clipping or mowing for hay,as a prevalent land-use practice,is considered to be an important component of global change.Root production and turnover in response to clipping have great implications for the plant s... Aims Clipping or mowing for hay,as a prevalent land-use practice,is considered to be an important component of global change.Root production and turnover in response to clipping have great implications for the plant survival strategy and grassland ecosystem carbon processes.However,our knowledge about the clipping effect on root dynamics is mainly based on root living biomass,and limited by the lack of spatial and temporal observations.The study aim was to investigate the effect of clipping on seasonal variations in root length production and mortality and their distribution patterns in different soil layers in semiarid grassland on the Loess Plateau.Methods Clipping was performed once a year in June to mimic the local spring livestock grazing beginning from 2014.The minirhizotron technique was used to monitor the root production,mortality and turnover rate at various soil depths(0–10,10–20,20–30 and 30–50 cm)in 2014(from 30 May to 29 October)and 2015(from 22 April to 25 October).Soil temperature and moisture in different soil layers were also measured during the study period.Important Findings Our results showed that:(i)Clipping significantly decreased the cumulative root production(P<0.05)and increased the cumulative root mortality and turnover rates of the 0–50 cm soil profile for both years.(ii)Clipping induced an immediate and sharp decrease in root length production and an increase in root length mortality in all soil layers.However,with plant regrowth,root production increased and root mortality decreased gradually,with the root production at a depth of 30–50 cm even exceeding the control in September–October 2014 and April–May 2015.(iii)Clipping mainly reduced root length production and increased root length mortality in the upper 0–20 cm soil profile with rapid root turnover.However,roots at deeper soil layers were either little influenced by clipping or exhibited an opposite trend with slower turnover rate compared with the upper soil profile,leading to the downward transport of root production and living root biomass.These findings indicate that roots in deeper soil layers tend to favour higher root biomass and longer fine root life spans to maximize the water absorption efficiency under environmental stress,and also suggest that short-term clipping would reduce the amount of carbon through fine root litter into the soil,especially in the shallow soil profile. 展开更多
关键词 CLIPPING root dynamics vertical root distribution seasonal variation in root growth temperate grassland
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部