The current research of seawater hydraulic motor mainly focused on piston motor and vane motor, but seldom regarded low speed high torque seawater hydraulic motor. Low speed high torque seawater hydraulic motor as a k...The current research of seawater hydraulic motor mainly focused on piston motor and vane motor, but seldom regarded low speed high torque seawater hydraulic motor. Low speed high torque seawater hydraulic motor as a kind of energy conversion device and actuator plays an important role in seawater hydraulic transmission system. However, the physical and chemical properties of seawater, such as low viscosity, high causticity and poor lubrication, result in numerous problems. In this paper, the flow distribution characteristics of port plate pairs for the seawater hydraulic motor are investigated, and the leakage flow and power loss models of port plate pairs are established. Numerical simulations are carried out to examine the effects of water film, inlet pressure and rotating speed on the pressure distribution and leakage flow. And the friction and wear tests of port plate pairs are also carried out. Moreover, the test system of the seawater hydraulic motor is constructed and the performance of prototype with no-load or loading is conducted. The results indicate that the clearance of port plate pairs and inlet pressure have a significant effect on distribution characteristics, but the effect of rotating speed is not very obvious. The experimental results show that the minimum error rate can be maintained within 0.3% by the proposed flow model and the counter materials of 316 L against carbon-fiber-reinforced polyetheretherketone(CFRPEEK) are suitable for the port plate pairs of seawater hydraulic motor. Finally, based on the seawater hydraulic experiment platform, the volumetric efficiency of no-load and loading are obtained that the maximum can achieve 94.71% and 90.14%, respectively. This research work may improve the flow distribution performance, lubrication and the friction and wear properties, enhance energy converting efficiency of port plate pair and provide theoretical and technical support for the design of highperformance water hydraulic components.展开更多
Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a su...Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a super high pressure hydraulic seawater system.A super high pressure seawater pump and a deep-sea brushless DC motor are used to pump seawater into or from the variable ballast tank,increasing or decreasing the weight of the manned submersible.A magnetostrictive linear displacement transducer can detect the seawater level in the variable ballast tank.Some seawater valves are used to control pumping direction and control on-off states.The design and testing procedure for the valves is described.Finally,the future development of variable ballast systems and seawater hydraulic systems is projected.展开更多
Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt t...Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt to sea depths.As working depths increase,seawater hydraulic technology faces enormous challenges.First,the physical and chemical properties of seawater,such as density,temperature,and composition,change significantly.Second,hydraulic components are subject to an environmental pressure of up to 110 MPa,which causes serious deformation or even seizure of moving pairs and significantly affects the efficiency of hydraulic components.The friction and wear characteristics between the moving pairs also significantly change with the change in sea depth,therefore developing the matching material according to depth is necessary.Finally,the cavitation characteristic of a valve port is obviously different from that on land,so special material and structure should be used to improve the service life of the valve port.These factors severely restrict the improvement of the working depths and characteristics of seawater hydraulic components.This article focuses on the abovementioned problems and provides solutions for deep-sea seawater hydraulic technology.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51505111,51805125)Zhejiang Provincial National Natural Science Foundation of China(Grant No.LQ16E050003)+1 种基金Hebei Provincial National Natural Science Foundation of China(Grant No.E2015203006)Open Foundation of State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201519)
文摘The current research of seawater hydraulic motor mainly focused on piston motor and vane motor, but seldom regarded low speed high torque seawater hydraulic motor. Low speed high torque seawater hydraulic motor as a kind of energy conversion device and actuator plays an important role in seawater hydraulic transmission system. However, the physical and chemical properties of seawater, such as low viscosity, high causticity and poor lubrication, result in numerous problems. In this paper, the flow distribution characteristics of port plate pairs for the seawater hydraulic motor are investigated, and the leakage flow and power loss models of port plate pairs are established. Numerical simulations are carried out to examine the effects of water film, inlet pressure and rotating speed on the pressure distribution and leakage flow. And the friction and wear tests of port plate pairs are also carried out. Moreover, the test system of the seawater hydraulic motor is constructed and the performance of prototype with no-load or loading is conducted. The results indicate that the clearance of port plate pairs and inlet pressure have a significant effect on distribution characteristics, but the effect of rotating speed is not very obvious. The experimental results show that the minimum error rate can be maintained within 0.3% by the proposed flow model and the counter materials of 316 L against carbon-fiber-reinforced polyetheretherketone(CFRPEEK) are suitable for the port plate pairs of seawater hydraulic motor. Finally, based on the seawater hydraulic experiment platform, the volumetric efficiency of no-load and loading are obtained that the maximum can achieve 94.71% and 90.14%, respectively. This research work may improve the flow distribution performance, lubrication and the friction and wear properties, enhance energy converting efficiency of port plate pair and provide theoretical and technical support for the design of highperformance water hydraulic components.
基金Supported by the "863" Foundation under Grant No.2002AA401000
文摘Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a super high pressure hydraulic seawater system.A super high pressure seawater pump and a deep-sea brushless DC motor are used to pump seawater into or from the variable ballast tank,increasing or decreasing the weight of the manned submersible.A magnetostrictive linear displacement transducer can detect the seawater level in the variable ballast tank.Some seawater valves are used to control pumping direction and control on-off states.The design and testing procedure for the valves is described.Finally,the future development of variable ballast systems and seawater hydraulic systems is projected.
基金supported by the National Natural Science Foundation of China(Grant Nos.52075192&52122502)。
文摘Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt to sea depths.As working depths increase,seawater hydraulic technology faces enormous challenges.First,the physical and chemical properties of seawater,such as density,temperature,and composition,change significantly.Second,hydraulic components are subject to an environmental pressure of up to 110 MPa,which causes serious deformation or even seizure of moving pairs and significantly affects the efficiency of hydraulic components.The friction and wear characteristics between the moving pairs also significantly change with the change in sea depth,therefore developing the matching material according to depth is necessary.Finally,the cavitation characteristic of a valve port is obviously different from that on land,so special material and structure should be used to improve the service life of the valve port.These factors severely restrict the improvement of the working depths and characteristics of seawater hydraulic components.This article focuses on the abovementioned problems and provides solutions for deep-sea seawater hydraulic technology.